Hopf Forms and Hopf-Galois Theory

Robert G. Underwood
Department of Mathematics
Department of Computer Science
Auburn University at Montgomery
Montgomery, Alabama

May 30, 2020

1. Introduction

Let K be a field containing \mathbb{Q} and let N be a finite group with automorphism group $F=\operatorname{Aut}(N)$. R. Haggenmüller and B.
Pareigis have shown that there is a bijection

$$
\Theta: \mathcal{G a l}(K, F) \rightarrow \mathcal{H o p f}(K N)
$$

from the collection of F-Galois extensions of K to the collection of Hopf forms of the group ring $K N$. In more detail, if L is an F-Galois extension of K, then the corresponding K-Hopf form is the fixed ring

$$
\Theta(L)=H=(L N)^{F}
$$

[6, Theorem 5].

Let $N=C_{n}$ denote the cyclic group of order n. If $n=2$, then F is trivial and $K C_{2}$ is the only Hopf form of $K C_{2}$. For the cases $n=3,4,6$,

$$
F=\operatorname{Aut}\left(C_{n}\right)=\mathbb{Z}_{n}^{*}=C_{2}
$$

The C_{2}-Galois extensions of K are completely classified as the quadratic extensions $L=K[x] /\left(x^{2}-b\right)$, where $b \in K^{\times}[13]$. Thus the result of Haggenmüller and Pareigis yields an explicit description of all Hopf forms of $K C_{n}$ for the cases $n=3,4,6[6$, Theorem 6].

In the cases $n \neq 2,3,4,6$, the F-Galois extensions of K (and consequently) the Hopf forms of $K C_{n}$ seem difficult to compute.

So it is of interest to investigate the structure of Hopf forms of $K C_{n}$ for $n \geq 2$.

Two special Hopf forms of $K C_{n}$ can be identified.

1. The trivial Hopf form $K C_{n}$, which is the image under Θ of the trivial F-Galois extension $\operatorname{Map}(F, K)$ of K; if $L=\operatorname{Map}(F, K)$, then

$$
\Theta(L)=K C_{n} .
$$

2. The linear dual $\left(K C_{n}\right)^{*}$, which is the absolutely semisimple Hopf form of $K C_{n}$. If $L=K[x] /\left(\Phi_{n}(x)\right)$, where $\Phi_{n}(x)$ is the nth cyclotomic polynomial, then L is a \mathbb{Z}_{n}^{*}-Galois extension of K and

$$
\Theta(L)=\left(K C_{n}\right)^{*} .
$$

In the case that $K=\mathbb{Q}$ and $n=p$ is prime, we obtain an explicit description of $\left(\mathbb{Q} C_{p}\right)^{*}$.

The Hopf form $\left(\mathbb{Q} C_{p}\right)^{*}$ is the ring of regular functions on an affine variety in \mathbb{Q}^{p-1}. The variety is isomorphic to C_{p} as a group of points, which could be of interest in other applications.

There is a natural application of Θ to Hopf-Galois theory:
Let (H, \cdot) be a Hopf-Galois structure of type N on the Galois extension of fields E / K. Then H is a Hopf form of $K N$ and thus

$$
\Theta(L)=H
$$

for some F-Galois extension L of $K, F=\operatorname{Aut}(N)$.
We show how to construct L as a subfield of E under certain conditions.

We identify necessary conditions for the Galois extension E / \mathbb{Q} with group $G, n=|G|$, to admit the Hopf-Galois structure $\left(\left(\mathbb{Q} C_{n}\right)^{*}, \cdot\right)$ of type C_{n}.

I would like to thank Tim Kohl for discussions regarding papers [6], [12].

2. Hopf Forms of $K N$

Let F be a finite group. An F-Galois extension of K is a commutative K-algebra L that satisfies
(i) F is a subgroup of $\operatorname{Aut}_{K}(L)$,
(ii) L is a finitely generated, projective K-module,
(iii) $F \subseteq \operatorname{End}_{K}(L)$ is a free generating system over K.

The notion of F-Galois extension generalizes the usual definition of a Galois extension of fields.

The K-algebra of maps $\operatorname{Map}(F, K)$ is the trivial F-Galois extension of K where the action of F on $\operatorname{Map}(F, K)$ is given as

$$
g(\phi)(h)=\phi\left(g^{-1} h\right)
$$

for $g, h \in F, \phi \in \operatorname{Map}(F, K)$.
We let $\mathcal{G} a l(K, F)$ denote the collection of all F-Galois extensions of K.

Let N be a finite group. Then the group ring $K N$ is a K-Hopf algebra.

Let L be a faithfully flat K-algebra. An L-Hopf form of $K N$ is a K-Hopf algebra H for which

$$
L \otimes_{K} H \cong L \otimes_{K} K N \cong L N
$$

as L-Hopf algebras.

A Hopf form of $K N$ is a K-Hopf algebra H for which there exists a faithfully flat K-algebra L with

$$
L \otimes_{K} H \cong L \otimes_{K} K N \cong L N
$$

as L-Hopf algebras.
The trivial Hopf form of $K N$ is $K N$.
Let $\mathcal{H o p f}(K N)$ denote the collection of all Hopf forms of $K N$.
R. Haggenmüller and B. Pareigis [6, Theorem 5] have classified all Hopf forms of $K N$.

Theorem 1 (Haggenmüller and Pareigis).

Let N be a finite group and let $F=\operatorname{Aut}(N)$. There is a bijection

$$
\Theta: \mathcal{G a l}(K, F) \rightarrow \mathcal{H o p f}(K N)
$$

which associates to each F-Galois extension L of K, the Hopf form $H=\Theta(L)$ of $K N$ defined as

$$
H=(L N)^{F}
$$

where the action of F on N is through the automorphism group $F=\operatorname{Aut}(N)$ and the action of F on L is the Galois action. The Hopf form H is an L-Hopf form of $K N$ with isomorphism $\psi: L \otimes_{K} H \rightarrow L N$ defined as $\psi(x \otimes h)=x h$.

Proposition 2.

Let N be a finite group, let $F=\operatorname{Aut}(N)$, and let $L=\operatorname{Map}(F, K)$. Then

$$
\Theta(L)=(L N)^{F} \cong K N
$$

Proof (Sketch).
$H=(L N)^{F}$ has a K-basis consisting of group-like elements. Hence, $H=K N^{\prime}$ for some finite group N^{\prime}. Since
$L \otimes_{K} H=L \otimes_{K} K N^{\prime} \cong L N$ as Hopf algebras, we conclude that $N^{\prime} \cong N$.

Remark 3.

The proposition above shows that

$$
\operatorname{Map}(F, K)=\Theta^{-1}(K N)
$$

In general, given a Hopf form H of $K N$ it is not clear (at least to this author) how to explicitly construct an element $L \in \mathcal{G}$ al (K, F) for which $\Theta(L)=H$.

3. The Absolutely Semisimple Hopf Form of $K C_{n}$

Let $N=C_{n}$. By Maschke's theorem, $K C_{n}$ is semisimple. Extending scalars to \mathbb{C} yields the Wedderburn-Artin decomposition

$$
\mathbb{C} C_{n}=\mathbb{C} \otimes_{K} K C_{n} \cong \underbrace{\mathbb{C} \times \mathbb{C} \times \cdots \times \mathbb{C}}_{n} .
$$

Let L be a separable K-algebra. Then any L-Hopf form of $K C_{n}$ is also semisimple. An L-Hopf form H of $K C_{n}$ is absolutely semisimple if

$$
H=\underbrace{K \times K \times \cdots \times K}_{n} .
$$

Absolutely semisimple Hopf forms of $K C_{n}$ always exist [12, Theorem 4.3].

Theorem 4 (Pareigis).
$K C_{n}$ has a uniquely determined absolutely semisimple Hopf form $H=\left(K C_{n}\right)^{*}$, where $\left(K C_{n}\right)^{*}$ is the linear dual of $K C_{n}$.

As a Hopf form of $K C_{n},\left(K C_{n}\right)^{*}$ comes from some F-Galois extension L. Here is how we can find L.

Proposition 5.

Let $\Phi_{n}(x)$ denote the nth cyclotomic polynomial and let $F=\operatorname{Aut}\left(C_{n}\right)=\mathbb{Z}_{n}^{*}$. Then $L=K[x] /\left(\Phi_{n}(x)\right)$ is an F-Galois extension of K and

$$
\Theta(L)=\left(L C_{n}\right)^{F}=\left(K C_{n}\right)^{*}=\underbrace{K \times K \times \cdots \times K}_{n} .
$$

Proof (Sketch).
We have

$$
L C_{n} \cong \underbrace{L \times L \times \cdots \times L}_{n} .
$$

The action of F fixes each idempotent, and so,

$$
\left(L C_{n}\right)^{F} \cong \underbrace{K \times K \times \cdots \times K}_{n}
$$

(See the discussion after the proof of [12, Theorem 4.3].)

Remark 6.

$K[x] /\left(\Phi_{n}(x)\right)$ is not necessarily a field. For example, if $K=\mathbb{Q}\left(\zeta_{3}\right)$, then

$$
K[x] /\left(\Phi_{15}(x)\right) \cong K\left(\zeta_{15}\right) \times K\left(\zeta_{15}\right)
$$

The faithfully flat (separable) K-algebra $K\left(\zeta_{15}\right) \times K\left(\zeta_{15}\right)$ is an $F=\mathbb{Z}_{15}^{*}=\left(C_{2} \times C_{4}\right)$-Galois extension of K corresponding to $\left(K C_{15}\right)^{*}$.

If $K=\mathbb{Q}$, then $\mathbb{Q}[x] /\left(\Phi_{n}(x)\right)$ is a field, isomorphic to $\mathbb{Q}\left(\zeta_{n}\right) ; \mathbb{Q}\left(\zeta_{n}\right)$ is a Galois extension of \mathbb{Q} with group \mathbb{Z}_{n}^{*}. In the case that $n=p$ is a prime, we restate Proposition 5 and give a detailed proof.

Proposition 7.

Let ζ_{p} denote a primitive pth root of unity and let $L=\mathbb{Q}\left(\zeta_{p}\right)$. Then

$$
\Theta(L)=\left(L C_{p}\right)^{F}=\left(\mathbb{Q} C_{p}\right)^{*}
$$

where $F=\operatorname{Aut}\left(C_{p}\right)=\mathbb{Z}_{p}^{*}$.
Proof.
Let $C_{p}=\langle\sigma\rangle$ and let $r \in \mathbb{Z}_{p}^{*}$ be a primitive root modulo p. Let $\zeta=\zeta_{p}$. Then $L=\mathbb{Q}(\zeta)$ is Galois with group $\mathbb{Z}_{p}^{*} \cong C_{p-1}=\langle g\rangle$.

The Galois action is given as $g^{i}(\zeta)=\zeta^{r^{i}}$ and the action of $\mathbb{Z}_{p}^{*}=\operatorname{Aut}\left(C_{p}\right)$ on C_{p} is given as $g^{i}(\sigma)=\sigma^{r^{i}}$.

A typical element of $L C_{p}$ is $\sum_{i=0}^{p-1}\left(\sum_{j=0}^{p-2} \alpha_{i j} \zeta^{j}\right) \sigma^{i}$ for $\alpha_{i j} \in \mathbb{Q}$. To be in $\left(L C_{p}\right)^{F}$, we require that
$g^{k}\left(\sum_{i=0}^{p-1}\left(\sum_{j=0}^{p-2} \alpha_{i j} \zeta^{j}\right) \sigma^{i}\right)=\sum_{i=0}^{p-1}\left(\sum_{j=0}^{p-2} \alpha_{i j} \zeta^{r^{k} j}\right) \sigma^{r^{k} i}=\sum_{i=0}^{p-1}\left(\sum_{j=0}^{p-2} \alpha_{i j} \zeta^{j}\right) \sigma^{i}$,
for $0 \leq k \leq p-2$.
Thus, $\left(L C_{p}\right)^{F}$ is generated as a \mathbb{Q}-algebra by the quantities

$$
X_{i}=\sum_{j=0}^{p-2} \zeta^{i r^{j}} \sigma^{r^{j}}
$$

for $0 \leq i \leq p-2$.
And as is well-known, the quantities
$\left\{\left(1+X_{0}\right) / p,\left(1+X_{1}\right) / p, \ldots,\left(1+X_{p-2}\right) / p,\left(1-X_{0}-X_{1}-\cdots-X_{p-2}\right) / p\right\}$
are the p minimal orthogonal idempotents for $\left(\mathbb{Q} C_{p}\right)^{*}$.

Proposition 8.

Let $\left(\mathbb{Q} C_{p}\right)^{*}$ be the absolutely semisimple Hopf form of $\mathbb{Q} C_{p}$.
(i) As \mathbb{Q}-algebras,

$$
\left(\mathbb{Q} C_{p}\right)^{*} \cong \mathbb{Q}\left[X_{0}, X_{1}, \ldots, X_{p-2}\right] / I
$$

where I is the ideal of $\mathbb{Q}\left[X_{0}, X_{1}, \ldots, X_{p-2}\right]$ generated by

$$
\left\{\left(X_{i}-(p-1)\right)\left(X_{i}+1\right)\right\}, \quad 0 \leq i \leq p-2
$$

and

$$
\left\{\left(X_{i}+1\right)\left(X_{j}+1\right)\right\}, \quad 0 \leq i, j \leq p-2, \quad i<j
$$

(ii) The \mathbb{Q}-Hopf algebra structure of $\left(\mathbb{Q} C_{p}\right)^{*}$ is given as

$$
\begin{gathered}
\varepsilon\left(X_{0}\right)=p-1 \\
\varepsilon\left(X_{1}\right)=\varepsilon\left(X_{2}\right)=\cdots=\varepsilon\left(X_{p-2}\right)=-1 \\
S\left(X_{0}\right)=X_{0} \\
S\left(X_{1}\right)=-\sum_{i=0}^{p-2} X_{i} \\
S\left(X_{i}\right)=X_{p-i}, \quad 2 \leq i \leq p-2
\end{gathered}
$$

and, with $X_{p-1}=S\left(X_{1}\right)$,

$$
\Delta\left(X_{i}\right)=\left(\frac{1}{p} \sum_{j=0}^{p-1}\left(1+X_{p-j}\right) \otimes\left(1+X_{i+j}\right)\right)-(1 \otimes 1)
$$

for $0 \leq i \leq p-2$, where the subscripts are taken modulo p.

Proof.
For (i): The linear dual $\left(\mathbb{Q} C_{p}\right)^{*}$ is generated as a \mathbb{Q}-algebra by $X_{0}, X_{1}, \ldots, X_{p-2}$. For $0 \leq i \leq p-2$,

$$
\left(\frac{X_{i}+1}{p}\right)\left(\frac{X_{i}+1}{p}\right)=\frac{X_{i}+1}{p} .
$$

Thus

$$
\left(X_{i}+1\right)\left(X_{i}+1\right)=p\left(X_{i}+1\right)
$$

hence

$$
\left(X_{i}-(p-1)\right)\left(X_{i}+1\right)=0, \quad 0 \leq i \leq p-2
$$

For $0 \leq i, j \leq p-2, i<j$,

$$
\left(\frac{X_{i}+1}{p}\right)\left(\frac{X_{j}+1}{p}\right)=0
$$

hence

$$
\left(X_{i}+1\right)\left(X_{j}+1\right)=0, \quad 0 \leq i, j \leq p-2, i<j
$$

For (ii): The dual $\left(\mathbb{Q} C_{p}\right)^{*}$ is a \mathbb{Q}-Hopf form of $\mathbb{Q} C_{p}$ with Hopf structure induced from that of $L C_{p}, L=\mathbb{Q}\left(\zeta_{p}\right)$.

Example 9.

Let $C_{5}=\langle\sigma\rangle=\left\{1, \sigma, \sigma^{2}, \sigma^{3}, \sigma^{4}\right\}$. Then

$$
\operatorname{Aut}\left(C_{5}\right)=C_{4}=\langle g\rangle=\left\{1, g, g^{2}, g^{3}\right\}
$$

with action given as

$$
1(\sigma)=\sigma, \quad g(\sigma)=\sigma^{2}, \quad g^{2}(\sigma)=\sigma^{4}, \quad g^{3}(\sigma)=\sigma^{3}
$$

Let $\Phi_{5}(x)=x^{4}+x^{3}+x^{2}+x+1$ be the 5 th cyclotomic polynomial. Then

$$
L=\mathbb{Q}[x] /\left(\Phi_{5}(x)\right)=\mathbb{Q}\left(\zeta_{5}\right) ;
$$

L is Galois with group C_{4}, with Galois action given as $g(\zeta)=\zeta^{2}$. The absolutely semisimple Hopf form of $\mathbb{Q} C_{5}$ is

$$
\Theta(L)=\left(L C_{5}\right)^{C_{4}}=\left(\mathbb{Q} C_{5}\right)^{*}
$$

As a \mathbb{Q}-algebra, $\left(\mathbb{Q} C_{5}\right)^{*}$ is generated by

$$
x_{0}=\sigma+\sigma^{2}+\sigma^{4}+\sigma^{3}, \quad X_{1}=\zeta \sigma+\zeta^{2} \sigma^{2}+\zeta^{4} \sigma^{4}+\zeta^{3} \sigma^{3}
$$

$$
X_{2}=\zeta^{2} \sigma+\zeta^{4} \sigma^{2}+\zeta^{3} \sigma^{4}+\zeta \sigma^{3}, \quad X_{3}=\zeta^{3} \sigma+\zeta \sigma^{2}+\zeta^{2} \sigma^{4}+\zeta^{4} \sigma^{3}
$$

We have

$$
\left(\mathbb{Q} C_{5}\right)^{*}=\mathbb{Q}\left[X_{0}, X_{1}, X_{2}, X_{3}\right] / I
$$

where the ideal I is generated by

$$
\left(X_{0}-4\right)\left(X_{0}+1\right), \quad\left(X_{1}-4\right)\left(X_{1}+1\right), \quad\left(X_{2}-4\right)\left(X_{2}+1\right), \quad\left(X_{3}-4\right)\left(X_{3}+1\right)
$$

$$
\begin{gathered}
\left(X_{0}+1\right)\left(X_{1}+1\right), \quad\left(X_{0}+1\right)\left(X_{2}+1\right), \quad\left(X_{0}+1\right)\left(X_{3}+1\right) \\
\left(X_{1}+1\right)\left(X_{2}+1\right), \quad\left(X_{1}+1\right)\left(X_{3}+1\right) \\
\left(X_{2}+1\right)\left(X_{3}+1\right)
\end{gathered}
$$

The Hopf algebra structure of $\left(\mathbb{Q} C_{5}\right)^{*}$ is given by

$$
\begin{gathered}
\varepsilon\left(X_{0}\right)=4, \quad \varepsilon\left(X_{1}\right)=\varepsilon\left(X_{2}\right)=\varepsilon\left(X_{3}\right)=-1 \\
S\left(X_{0}\right)=X_{0}, \quad S\left(X_{1}\right)=-X_{0}-X_{1}-X_{2}-X_{3} \\
S\left(X_{2}\right)=X_{3}, \quad S\left(X_{3}\right)=X_{2}
\end{gathered}
$$

and

$$
\begin{aligned}
\Delta\left(X_{0}\right)= & \frac{1}{5}\left(1+X_{0}\right) \otimes\left(1+X_{0}\right)+\frac{1}{5}\left(1-X_{0}-X_{1}-X_{2}-X_{3}\right) \otimes\left(1+X_{1}\right) \\
& +\frac{1}{5}\left(1+X_{3}\right) \otimes\left(1+X_{2}\right)+\frac{1}{5}\left(1+X_{2}\right) \otimes\left(1+X_{3}\right) \\
& +\frac{1}{5}\left(1+X_{1}\right) \otimes\left(1-X_{0}-X_{1}-X_{2}-X_{3}\right)-1 \otimes 1, \\
\Delta\left(X_{1}\right)= & \frac{1}{5}\left(1+X_{0}\right) \otimes\left(1+X_{1}\right)+\frac{1}{5}\left(1-X_{0}-X_{1}-X_{2}-X_{3}\right) \otimes\left(1+X_{2}\right) \\
& +\frac{1}{5}\left(1+X_{3}\right) \otimes\left(1+X_{3}\right)+\frac{1}{5}\left(1+X_{2}\right) \otimes\left(1-X_{0}-X_{1}-X_{2}-X_{3}\right) \\
& +\frac{1}{5}\left(1+X_{1}\right) \otimes\left(1+X_{0}\right)-1 \otimes 1,
\end{aligned}
$$

$$
\begin{aligned}
\Delta\left(X_{2}\right)= & \frac{1}{5}\left(1+X_{0}\right) \otimes\left(1+X_{2}\right)+\frac{1}{5}\left(1-X_{0}-X_{1}-X_{2}-X_{3}\right) \otimes\left(1+X_{3}\right) \\
& +\frac{1}{5}\left(1+X_{3}\right) \otimes\left(1-X_{0}-X_{1}-X_{2}-X_{3}\right)+\frac{1}{5}\left(1+X_{2}\right) \otimes\left(1+X_{0}\right) \\
& +\frac{1}{5}\left(1+X_{1}\right) \otimes\left(1+X_{1}\right)-1 \otimes 1, \\
\Delta\left(X_{3}\right)= & \frac{1}{5}\left(1+X_{0}\right) \otimes\left(1+X_{3}\right) \\
& +\frac{1}{5}\left(1-X_{0}-X_{1}-X_{2}-X_{3}\right) \otimes\left(1-X_{0}-X_{1}-X_{2}-X_{3}\right) \\
& +\frac{1}{5}\left(1+X_{3}\right) \otimes\left(1+X_{0}\right)+\frac{1}{5}\left(1+X_{2}\right) \otimes\left(1+X_{1}\right) \\
& +\frac{1}{5}\left(1+X_{1}\right) \otimes\left(1+X_{2}\right)-1 \otimes 1 .
\end{aligned}
$$

4. The Group of Points

Let

$$
\left(\mathbb{Q} C_{p}\right)^{*}=\mathbb{Q}\left[X_{0}, X_{1}, \ldots, X_{p-2}\right] / l
$$

be the absolutely semisimple Hopf form of $\mathbb{Q} C_{p}$. Let V be the set of common zeros of the polynomials in the ideal I.
V consists of p points of \mathbb{Q}^{p-1}

$$
P_{1}, P_{2}, \ldots, P_{p-1}, P_{p}
$$

where for $1 \leq i \leq p-1, P_{i}$ is the point that has $p-1$ in the i th component and -1 elsewhere, and P_{p} has -1 in each component.

Let

$$
\mathrm{G}=\operatorname{Hom}_{\mathbb{Q}-\mathrm{alg}}\left(\left(\mathbb{Q} C_{p}\right)^{*},-\right)
$$

be the \mathbb{Q}-group scheme represented by $\left(\mathbb{Q} C_{p}\right)^{*}$.
It is well-known that there is a group isomorphism

$$
\mathrm{G}(\mathbb{Q})=V \cong C_{p}
$$

defined by $\bar{X}_{i} \mapsto x_{i}$, where x_{i} is the i th component of $P \in V$, $1 \leq i \leq p-1$ [14, Section 1.2, Theorem], [14, Section 2.3].

In more detail: V is endowed with a binary operation (point addition) induced from comultiplication. Point addition is defined as follows.

For $P=\left(x_{0}, x_{1}, \ldots, x_{p-2}\right), Q=\left(y_{0}, y_{1}, \ldots, y_{p-1}\right)$ in V,

$$
P+Q=R=\left(z_{0}, z_{1}, \ldots, z_{p-2}\right)
$$

where

$$
\begin{gathered}
z_{0}=\frac{1}{p}\left(\left(1+x_{0}\right)\left(1+y_{0}\right)+\left(1-\sum_{i=0}^{p-2} x_{i}\right)\left(1+y_{1}\right)+\left(1+x_{p-2}\right)\left(1+y_{2}\right)\right. \\
+\cdots+\left(1+x_{2}\right)\left(1+y_{p-2}\right)+\left(1+x_{1}\right)\left(1-\sum_{i=0}^{p-2} y_{i}\right)-1, \\
\vdots \\
z_{p-2}=\frac{1}{p}\left(\left(1+x_{0}\right)\left(1+y_{p-2}\right)+\left(1-\sum_{i=0}^{p-2} x_{i}\right)\left(1-\sum_{i=0}^{p-2} y_{i}\right)+\left(1+x_{p-2}\right)\left(1+y_{0}\right)\right. \\
\left.\quad+\left(1+x_{p-3}\right)\left(1+y_{1}\right)+\cdots+\left(1+x_{1}\right)\left(1+y_{p-3}\right)\right)-1 .
\end{gathered}
$$

The identity element in V is the point

$$
\begin{aligned}
O=P_{1} & =\left(\varepsilon\left(X_{0}\right), \varepsilon\left(X_{1}\right), \varepsilon\left(X_{2}\right), \ldots, \varepsilon\left(X_{p-2}\right)\right) \\
& =(p-1,-1,-1, \ldots,-1)
\end{aligned}
$$

the inverse of the point $P=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{p-3}, x_{p-2}\right) \in V$ is

$$
\begin{gathered}
-P=\left(S\left(X_{0}\right), S\left(X_{1}\right), S\left(X_{2}\right), \ldots, S\left(X_{p-2}\right)\right. \\
=\left(x_{0},-\sum_{i=0}^{p-2} x_{i}, x_{p-2}, x_{p-3}, \ldots, x_{3}, x_{2}\right)
\end{gathered}
$$

where we identify $S\left(X_{i}\right)$ with its image under the \mathbb{Q}-algebra homomorphism $\bar{X}_{i} \mapsto x_{i}$.

Thus V is a group with p elements, which must be isomorphic to C_{p}.

Example 10.

From Example 9

$$
\left(\mathbb{Q} C_{5}\right)^{*}=\mathbb{Q}\left[X_{0}, X_{1}, X_{2}, X_{3}\right] / I
$$

is the absolutely semisimple Hopf form of $\mathbb{Q} C_{5}$. The set of common zeros of the polynomials in I is

$$
\begin{gathered}
V=\{(4,-1,-1,-1),(-1,4,-1,-1),(-1,-1,4,-1), \\
(-1,-1,-1,4),(-1,-1,-1,-1)\}
\end{gathered}
$$

with $V \cong C_{5}$, where V is endowed with point addition.
The identity element is $O=P_{1}=(4,-1,-1,-1)$, the inverse of $P_{2}=(-1,4,-1,-1)$ is $P_{5}=(-1,-1,-1,-1)$, and the inverse of $P_{3}=(-1,-1,4,-1)$ is $P_{4}=(-1,-1,-1,4)$.

For instance,

$$
\begin{aligned}
P_{3}+O & =(-1,-1,4,-1)+(4,-1,-1,-1) \\
& =(-1,-1,4,-1) \\
& =P_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
2 P_{2} & =2(-1,4,-1,-1) \\
& =(-1,4,-1,-1)+(-1,4,-1,-1) \\
& =(-1,-1,4,-1) \\
& =P_{3} .
\end{aligned}
$$

5. Connection to Hopf-Galois Theory

5.1 Brief Review of Greither-Pareigis

Let E / K be a Galois extension with group G. Let H be a finite dimensional, cocommutative K-Hopf algebra.

Suppose there is a K-linear action • of H on E that satisfies

$$
h \cdot(x y)=\sum_{(h)}\left(h_{(1)} \cdot x\right)\left(h_{(2)} \cdot y\right), \quad h \cdot 1=\varepsilon(h) 1
$$

for all $h \in H, x, y \in E$, where $\Delta(h)=\sum_{(h)} h_{(1)} \otimes h_{(2)}$ is Sweedler notation. Suppose also that the K-linear map

$$
j: E \otimes_{K} H \rightarrow \operatorname{End}_{K}(E), j(x \otimes h)(y)=x(h \cdot y)
$$

is an isomorphism of vector spaces over K. Then H together with this action, denoted as (H, \cdot), provides a Hopf-Galois structure on E / K.

Two Hopf-Galois structures $\left(H_{1}, \cdot{ }^{1}\right),\left(H_{2}, \cdot 2\right)$ on E / K are isomorphic if there is a Hopf algebra isomorphism $f: H_{1} \rightarrow H_{2}$ for which $h \cdot{ }_{1} x=f(h) \cdot{ }_{2} x$ for all $x \in E, h \in H$ (see [4, Introduction]).
C. Greither and B. Pareigis [5] have given a complete classification of Hopf-Galois structures up to isomorphism.

Theorem 11 (Greither and Pareigis).

Let E / K be a Galois extension with group G. There is a one-to-one correspondence between isomorphism classes of Hopf Galois structures on E / K and regular subgroups of $\operatorname{Perm}(G)$ that are normalized by $\lambda(G)$.

One direction of this correspondence works by Galois descent:
Let N be a regular subgroup of $\operatorname{Perm}(G)$ normalized by $\lambda(G) ; G$ acts on the group algebra $E N$ through the Galois action on E and conjugation by $\lambda(G)$ on N, i.e.,

$$
g(x \eta)=g(x)\left({ }^{g} \eta\right), g \in G, x \in E, \eta \in N
$$

where ${ }^{g} \eta$ denotes the conjugation action of $\lambda(g) \in \lambda(G)$ on $\eta \in N$.
Let

$$
H=(E N)^{G}=\{x \in E N: g(x)=x, \forall g \in G\}
$$

be the fixed ring H under the action of G. Then H is an n-dimensional E-Hopf algebra, $n=[E: K]$, and E / K admits the Hopf Galois structure (H, \cdot).

By $[5$, p. 249, proof of $3.1,(\mathrm{a}) \Longrightarrow(\mathrm{b})$],

$$
E \otimes_{K} H \cong E \otimes_{K} K N \cong E N,
$$

as E-Hopf algebras, so H is an E-form of $K N$.
Let N be a regular subgroup of $\operatorname{Perm}(G)$ normalized by $\lambda(G)$, and let (H, \cdot) be the corresponding Hopf-Galois structure. If N is isomorphic to the abstract group N^{\prime}, then we say that the Hopf-Galois structure (H, \cdot) on E / K is of type N^{\prime}.

5.2 Hopf Forms and Hopf-Galois Structures

If (H, \cdot) is a Hopf-Galois structure on E / K of type N, then the Hopf algebra H is a Hopf form of $K N$. Thus H can be recovered via Theorem 1. In other words, with $F=\operatorname{Aut}(N)$, there is an F-Galois extension L of K with

$$
\Theta(L)=H=(L N)^{F}
$$

As we have noted (Remark 3), it is not clear how to compute the required L; the inverse map

$$
\Theta^{-1}: \mathcal{H o p f}(K N) \rightarrow \mathcal{G a l}(K, F)
$$

is not given explictly.

Here is one way to find L.

Proposition 12.

Let E / K be a Galois extension with group G. Let (H, \cdot) be a Hopf-Galois structure corresponding to regular subgroup N. Let $F=\operatorname{Aut}(N)$, let

$$
W=\left\{g \in \lambda(G): g_{\eta}=\eta, \forall \eta \in N\right\}
$$

and let $L=E^{W}$. If W is a normal subgroup of $\lambda(G)$ with $\lambda(G) / W \cong F$, then $\Theta(L)=H$.

Proof.
By the Fundamental theorem of Galois theory, $L=E^{W}$ is Galois with group $F \cong \lambda(G) / W$, so L is an F-Galois extension. Now,

$$
H=(E N)^{G}=(L N)^{F}
$$

and so, $\Theta(L)=H$.

Example 13.

We consider the splitting field E of the polynomial $x^{4}-10 x^{2}+1$ over \mathbb{Q}. One has $E=\mathbb{Q}(\sqrt{2}, \sqrt{3}) ; E / \mathbb{Q}$ is Galois with group $C_{2} \times C_{2}=\{1, \sigma, \tau, \tau \sigma\}$ with Galois action $\sigma(\sqrt{2})=\sqrt{2}, \quad \sigma(\sqrt{3})=-\sqrt{3}, \quad \tau(\sqrt{2})=-\sqrt{2}, \quad \tau(\sqrt{3})=\sqrt{3}$.

By [1], there are three Hopf-Galois structures on E / \mathbb{Q} of type C_{4}, each of which is determined by a regular subgroup $N \cong C_{4}$ normalized by $\lambda\left(C_{2} \times C_{2}\right)$. One such N is given as

$$
N=\{(1),(1,3,2,4),(1,2)(3,4),(1,4,2,3)\}
$$

where $1:=1,2:=\sigma, 3:=\tau, 4:=\tau \sigma$, and

$$
\lambda\left(C_{2} \times C_{2}\right)=\{(1),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}
$$

N is a regular subgroup of $\operatorname{Perm}\left(C_{2} \times C_{2}\right)$ normalized by $\lambda\left(C_{2} \times C_{2}\right)$ with $N \cong C_{4}$.

Let (H, \cdot) be the corresponding Hopf-Galois extension with $H=(E N)^{G}$.

As one can check
$W=\left\{g \in \lambda\left(C_{2} \times C_{2}\right):{ }^{g} \eta=\eta, \forall \eta \in N\right\}=\{(1),(1,2)(3,4)\}=\{1, \sigma\}$.
We have $G / W \cong F=\operatorname{Aut}\left(C_{4}\right) \cong C_{2}$, and the fixed field $L=E^{W}=\mathbb{Q}(\sqrt{2})$ is an F-Galois extension of \mathbb{Q}.

So by Proposition $12, \Theta(L)=H$.

6. Absolutely Semisimple Hopf-Galois Structures

Let E / \mathbb{Q} be Galois with group $G, n=|G|$.
When does E / \mathbb{Q} admit a Hopf-Galois structure whose Hopf algebra is the absolutely semisimple Hopf form $\left(\mathbb{Q} C_{n}\right)^{*}$ of $\mathbb{Q} C_{n}$?

Proposition 14.
Let E / \mathbb{Q} be a Galois extension with group $G, n=|G|$. Suppose E / \mathbb{Q} admits the Hopf-Galois structure $\left(\left(\mathbb{Q} C_{n}\right)^{*}, \cdot\right)$. Then $\phi(n) \mid n$, where ϕ is Euler's function.

Proof.

Let N be the regular subgroup of $\operatorname{Perm}(G)$ normalized by $\lambda(G)$ that corresponds to $\left(\left(\mathbb{Q} C_{n}\right)^{*}, \cdot\right)$. Then

$$
E \otimes_{\mathbb{Q}}\left(\mathbb{Q} C_{n}\right)^{*} \cong E N
$$

as Hopf algebras. Thus $\left(\mathbb{Q} C_{n}\right)^{*}$ is an E-Hopf form of $\mathbb{Q} N$ and $E \otimes_{\mathbb{Q}}\left(\mathbb{Q} C_{n}\right)^{*} \cong\left(E C_{n}\right)^{*} \cong E N$, as E-Hopf algebras. The dual $\left(E C_{n}\right)^{*}$ decomposes as $\underbrace{E \times E \times \cdots \times E}_{n}$, thus
$E N \cong \underbrace{E \times E \times \cdots \times E}_{n}$, and so, $(E N)^{*} \cong E N$, as Hopf algebras. Hence, $E N \cong{ }^{n} C_{n}$ as E-Hopf algebras, and so, $C_{n} \cong N$. We conclude that E contains $\mathbb{Q}[x] /\left(\Phi_{n}(x)\right)$. Thus E contains a subfield of degree $\phi(n)$ over \mathbb{Q}. Hence $\phi(n) \mid n$.

Proposition 15.

Let $n>2$. Then $\phi(n) \mid n$ if and only if $n=2^{a} 3^{b}$ where $a>0$, $b \geq 0$.

Proof.
Suppose that $\phi(n) \mid n$. Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, where p_{i} are distinct primes, and $e_{i}>0$. Then

$$
\phi(n)=\left(p_{1}-1\right) p_{1}^{e_{1}-1}\left(p_{2}-1\right) p_{2}^{e_{2}-1} \cdots\left(p_{k}-1\right) p_{k}^{e_{k}-1}
$$

Since $n>2, \phi(n)$ is even, and so, n is even. Thus, $p_{1}=2$ in the prime factorization of n. Suppose that n has two odd prime factors p_{i}, p_{j}. Since $e_{i}, e_{j}>0$, both $p_{i}-1$ and $p_{j}-1$ are even, and so, $2^{e_{1}+1} \mid \phi(n)$, hence $2^{e_{1}+1} \mid n$, which is a contradiction. Thus, n has only one odd prime factor, say p, hence $n=2^{e_{1}} p^{e}, e>0$. Now, $(p-1) \mid \phi(n)$, thus $(p-1) \mid n$. Consequently, $(p-1)=2^{r}$ for some $r>0$ and $2^{e_{1}-1+r} \mid \phi(n)$, thus $2^{e_{1}-1+r} \mid n$. It follows that $r=1$ and so $p=3$. Hence $n=2^{a} 3^{b}$ where $a, b>0$.

For the converse, suppose that $n=2^{a} 3^{b}, a>0, b \geq 0$. If $b=0$, then $\phi(n)=2^{a-1}$ which divides n. If $b>0$, then $\phi(n)=2^{a-1} \cdot 2 \cdot 3^{b-1}=2^{a} 3^{b-1}$ which divides n.

Proposition 14 and Proposition 15 yield necessary conditions for the Galois extension E / \mathbb{Q} with group $G, n=|G|$, to admit the Hopf-Galois structure $\left(\left(\mathbb{Q} C_{n}\right)^{*}, \cdot\right)$, namely,
(i) $n=2^{a} 3^{b}, a>0, b \geq 0$,
(ii) E / \mathbb{Q} admits a Hopf-Galois structure of type C_{n}.

Example 16.

Consider the splitting field E of the polynomial $x^{4}-2 x^{2}+9$ over \mathbb{Q}. We show that E / \mathbb{Q} admits the Hopf-Galois structure $\left(\left(\mathbb{Q} C_{4}\right)^{*}, \cdot\right)$. We have $E=\mathbb{Q}(\sqrt{-1}, \sqrt{2}) ; E / \mathbb{Q}$ is Galois with group $C_{2} \times C_{2}=\{1, \sigma, \tau, \tau \sigma\}$ with Galois action

$$
\begin{aligned}
& \sigma(\sqrt{-1})=\sqrt{-1}, \quad \sigma(\sqrt{2})=-\sqrt{2} \\
& \tau(\sqrt{-1})=-\sqrt{-1}, \quad \tau(\sqrt{2})=\sqrt{2}
\end{aligned}
$$

Note that $n=4=2^{2} 3^{0}$. As in Example 13, there are three Hopf-Galois structures on E / \mathbb{Q} of type C_{4}, one of them is given by the regular subgroup

$$
N=\{(1),(1,3,2,4),(1,2)(3,4),(1,4,2,3)\}
$$

Let (H, \cdot) be the Hopf-Galois structure determined by N, $H=(E N)^{C_{2} \times C_{2}}$.

As in Example 13,
$W=\left\{g \in \lambda\left(C_{2} \times C_{2}\right):{ }^{g} \eta=\eta, \forall \eta \in N\right\}=\{(1),(1,2)(3,4)\}=\{1, \sigma\}$.
Thus W is a normal subgroup of $\lambda\left(C_{2} \times C_{2}\right)$ with
$G / W \cong C_{2} \cong F=\operatorname{Aut}\left(C_{4}\right)$.
We have $L=E^{W}=\mathbb{Q}(\sqrt{-1})$, thus L is F-Galois. Hence by Proposition 12,

$$
\Theta(L)=H
$$

But $L=\mathbb{Q}\left(\zeta_{4}\right)$, and so, $\Theta(L)=H=\left(\mathbb{Q} C_{4}\right)^{*}$ by Proposition 5 .

Example 17.

We take E / \mathbb{Q} to be the splitting field of $x^{3}-2$ over \mathbb{Q}, then $n=6=2 \cdot 3$. As shown in [8, Section 7], E / \mathbb{Q} admits a Hopf-Galois structure of type C_{6} whose Hopf algebra is the absolutely semisimple Hopf form $\left(\mathbb{Q} C_{6}\right)^{*}$ of $\mathbb{Q} C_{6}$.

Remark 18.

Recently, T. Kohl [9] has determined whether or not a Galois extension with group $G, n=|G|$, admits a Hopf-Galois structure of type C_{n} for various G. For example, if E / \mathbb{Q} is Galois with group A_{4}, then there are no Hopf-structures of type C_{12}. Thus E / \mathbb{Q} cannot have a Hopf-Galois structure with Hopf algebra $\left(\mathbb{Q} C_{12}\right)^{*}$.

Remark 19 (Galois theoretical embedding problem).

[10, Introduction]. Let $L=\mathbb{Q}\left(\zeta_{n}\right), n>2$, be the Galois extension of \mathbb{Q} with group $\mathbb{Z}_{n}^{*}=\operatorname{Aut}\left(C_{n}\right)$. Does there exist a Galois extension E / \mathbb{Q} with group G, and a short exact sequence of groups

$$
1 \rightarrow T \rightarrow G \rightarrow \mathbb{Z}_{n}^{*} \rightarrow 1
$$

so that $E^{T}=\mathbb{Q}\left(\zeta_{n}\right)$? If this is the case, suppose further that E / \mathbb{Q} admits a Hopf-Galois structure corresponding to regular subgroup $N \cong C_{n}$, with

$$
W=\left\{g \in \lambda(G):{ }^{g} \eta=\eta, \forall \eta \in N\right\}=T
$$

Then E / \mathbb{Q} admits the Hopf-Galois structure $\left(\left(\mathbb{Q} C_{n}\right)^{*}, \cdot\right)$.

Remark 20.

Regarding Remark 19, perhaps the Galois theoretical embedding problem would be easier to solve if $n=2 \cdot 3^{b}, b>0$. For then \mathbb{Z}_{n}^{*} is cyclic of order $\phi(n)$ [7, Proposition 4.1.3].

7. Some Questions

Question 21.

Consider the construction of the absolutely semisimple Hopf form $\left(\mathbb{Q} C_{p}\right)^{*}$ of Proposition 7. Suppose that the \mathbb{Q}-basis for $L=\mathbb{Q}(\zeta)$ is changed to the normal basis on the generator - ζ, i.e.,

$$
\left\{-\zeta, g(-\zeta), g^{2}(-\zeta), \ldots, g^{p-2}(-\zeta)\right\}
$$

or to some other \mathbb{Q}-basis given by powers of $a+b \zeta, a, b \in \mathbb{Q}$. How does this change of basis affect the generators and relations of $\left(\mathbb{Q} C_{p}\right)^{*}$ and the points of the variety V ?

Question 22.

Given two Hopf forms H, H^{\prime} of $K C_{n}$ when do we have $H \cong H^{\prime}$ as K-Hopf algebras? as K-algebras? (This is analogous to the question for Hopf-Galois structures.)

Question 23 (Pareigis).

Let N be any finite group. By Maschke's theorem, $\mathbb{Q} N$ is semisimple. Extending scalars to \mathbb{C} yields the Wedderburn-Artin decomposition

$$
\mathbb{C} N \cong \operatorname{Mat}_{n_{1}}(\mathbb{C}) \times \operatorname{Mat}_{n_{2}}(\mathbb{C}) \times \cdots \times \operatorname{Mat}_{n_{l}}(\mathbb{C})
$$

A Hopf form H of $\mathbb{Q} N$ is absolutely semisimple if

$$
H \cong \operatorname{Mat}_{n_{1}}(\mathbb{Q}) \times \operatorname{Mat}_{n_{2}}(\mathbb{Q}) \times \cdots \times \operatorname{Mat}_{n_{l}}(\mathbb{Q})
$$

For which groups N does $\mathbb{Q} N$ admit an absolutely semisimple Hopf form?

We address this question for various groups. First we consider abelian groups, then non-abelian groups.

Example 24.

Let $N=C_{n}, n \geq 1$. By Theorem 4, $\left(\mathbb{Q} C_{n}\right)^{*} \cong \mathbb{Q}^{n}$ is the absolutely semisimple Hopf form of $\mathbb{Q} C_{n}$. By Proposition $5, \Theta(L)=\left(\mathbb{Q} C_{n}\right)^{*}$, where $L=\mathbb{Q}\left(\zeta_{n}\right)$.

Example 25.

Let $N=C_{p}^{n}, p \geq 2, n \geq 1 ; C_{p}^{n}$ is the elementary abelian group of order p^{n}. Then $\mathbb{Q} C_{p}^{n}$ admits the absolutely semisimple Hopf form

$$
\left(\mathbb{Q} C_{p}^{n}\right)^{*} \cong \mathbb{Q}^{p^{n}}
$$

So there is an $\operatorname{Aut}\left(C_{p}^{n}\right)$-Galois extension L / \mathbb{Q} for which

$$
\Theta(L)=\left(\mathbb{Q} C_{p}^{n}\right)^{*} .
$$

What is the structure of L ?
Proposition 26.
Let

$$
L=\mathbb{Q}\left(\zeta_{p}\right)^{\frac{\prod_{i=0}^{n-1}\left(\rho^{n}-\rho^{i}\right)}{p-1}} .
$$

Then L is an $\operatorname{Aut}\left(C_{p}^{n}\right)$-Galois extension of \mathbb{Q} with $\Theta(L)=\left(\mathbb{Q} C_{p}^{n}\right)^{*}$.

Proof.
(Sketch) $\operatorname{Aut}\left(C_{p}^{n}\right)=\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ and

$$
\left|\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)\right|=\prod_{i=0}^{n-1}\left(p^{n}-p^{i}\right)
$$

For $1 \leq j \leq n$, there is a subgroup U_{j} of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ given as

$$
U_{j}=\left\{\operatorname{diag}\left(1, \ldots, 1, a^{(j)}, 1, \ldots, 1\right): a^{(j)} \in \mathbb{F}_{p}^{*}\right\} \cong \mathbb{F}_{p}^{*}
$$

The index is $\left[\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right): U_{j}\right]=\left(\prod_{i=0}^{n-1}\left(p^{n}-p^{i}\right)\right) /(p-1) ; \mathbb{Q}\left(\zeta_{p}\right)$ is a U_{j}-Galois extension of fields. Thus by [12, Theorem 4.2],

$$
L=\mathbb{Q}\left(\zeta_{p}\right)^{\frac{\prod_{i=0}^{n-1}\left(p^{n}-p^{i}\right)}{p-1}}
$$

is $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$-Galois. Moreover, $\Theta(L)=\left(\mathbb{Q} C_{p}^{n}\right)^{*}$.

Example 27.

Let $N=D_{3}$. Then

$$
\mathbb{Q} D_{3} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

Thus $\mathbb{Q} D_{3}$ is an absolutely semisimple Hopf form of itself.
Example 28.
Let $N=D_{4}$. Then

$$
\mathbb{Q} D_{4} \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q})
$$

Thus $\mathbb{Q} D_{4}$ is an absolutely semisimple Hopf form of itself.

Example 29.

Let $N=Q_{8}$, the quaternion group. We have

$$
\mathbb{C} Q_{8} \cong \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \operatorname{Mat}_{2}(\mathbb{C})
$$

yet

$$
\mathbb{Q} Q_{8} \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{H},
$$

where \mathbb{H} is the rational quaternions. Thus $\mathbb{Q} Q_{8}$ is not an absolutely semisimple form of itself.

Does $\mathbb{Q} Q_{8}$ admit an absolutely semisimple Hopf form?

目 1．N．P．Byott，Integral Hopf－Galois structures on degree p^{2} extensions of p－adic fields，J．Algebra，248，2002，334－365．
2．L．N．Childs，Taming Wild Extensions：Hopf Algebras and Local Galois Module Theory，AMS：Mathematical Surveys and Monographs，80， 2000.
囯 3．L．N．Childs，Hopf Galois structures on Kummer extensions of prime power degree，New York J．Math．，17，2011，51－74．

R 4．T．Crespo，A．Rio，M．Vela，Non－isomorphic Hopf－Galois structures with isomorphic underlying Hopf algebras，J． Algebra，\｛bf 455，（2015），270－276．
䍰 5．C．Greither and B．Pareigis，Hopf Galois theory for separable field extensions，J．Algebra，106，1987，239－258．
© 6．R．Haggenmüller，B．Pareigis，Hopf algebra forms on the multiplicative group and other groups，manuscripta math．，55， （1986），121－135．

R 7. K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, 2ed., GTM, 84, Springer-Verlag, New York, 1990.

回 8. A. Koch, T. Kohl, P. Truman, R. Underwood, The Structure of Hopf Algebras Acting on Dihedral Extensions. In: Feldvoss J., Grimley L., Lewis D., Pavelescu A., Pillen C. (eds) Advances in Algebra. SRAC 2017. Springer Proceedings in Mathematics \& Statistics, vol 277. Springer, Cham, (2019).
9. T. Kohl, Characteristic subgroup lattices and Hopf-Galois structures, Int. J. of Alg. and Comp., 29(02), 391-405 (2019).
10. A. Ledet, Embedding problems and equivalence of quadratic forms, Math. Scand., 88, 279-302, 2001.

囯 11. B. Pareigis, Twisted group rings, Comm. Alg., 17(12), 1989, 2923-2939.

冨 12．B．Pareigis，Forms of Hopf algebras and Galois theory， Topics in Algebra，Banach Center Publications，26，Part 1， PWN Polish Scientific Publishers， 1990.

嗇 13．C．Small，The Group of quadratic extensions，J．Pure Appl． Alg．，2，（1972），83－105．

囦 14．W．Waterhouse，Introduction to Affine Group Schemes， Springer－Verlag，New York， 1979.

