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1. Introduction

Let K be a field containing Q and let N be a finite group with
automorphism group F = Aut(N). R. Haggenmüller and B.
Pareigis have shown that there is a bijection

Θ : Gal(K ,F )→ Hopf (KN)

from the collection of F -Galois extensions of K to the collection of
Hopf forms of the group ring KN. In more detail, if L is an
F -Galois extension of K , then the corresponding K -Hopf form is
the fixed ring

Θ(L) = H = (LN)F

[6, Theorem 5].
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Let N = Cn denote the cyclic group of order n. If n = 2, then F is
trivial and KC2 is the only Hopf form of KC2. For the cases
n = 3, 4, 6,

F = Aut(Cn) = Z∗n = C2.

The C2-Galois extensions of K are completely classified as the
quadratic extensions L = K [x ]/(x2 − b), where b ∈ K× [13]. Thus
the result of Haggenmüller and Pareigis yields an explicit
description of all Hopf forms of KCn for the cases n = 3, 4, 6 [6,
Theorem 6].

In the cases n 6= 2, 3, 4, 6, the F -Galois extensions of K (and
consequently) the Hopf forms of KCn seem difficult to compute.
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So it is of interest to investigate the structure of Hopf forms of
KCn for n ≥ 2.

Two special Hopf forms of KCn can be identified.

1. The trivial Hopf form KCn, which is the image under Θ of the
trivial F -Galois extension Map(F ,K ) of K ; if L = Map(F ,K ), then

Θ(L) = KCn.

2. The linear dual (KCn)∗, which is the absolutely semisimple Hopf
form of KCn. If L = K [x ]/(Φn(x)), where Φn(x) is the nth
cyclotomic polynomial, then L is a Z∗n-Galois extension of K and

Θ(L) = (KCn)∗.
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In the case that K = Q and n = p is prime, we obtain an explicit
description of (QCp)∗.

The Hopf form (QCp)∗ is the ring of regular functions on an affine
variety in Qp−1. The variety is isomorphic to Cp as a group of
points, which could be of interest in other applications.
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There is a natural application of Θ to Hopf-Galois theory:

Let (H, ·) be a Hopf-Galois structure of type N on the Galois
extension of fields E/K . Then H is a Hopf form of KN and thus

Θ(L) = H

for some F -Galois extension L of K , F = Aut(N).

We show how to construct L as a subfield of E under certain
conditions.

We identify necessary conditions for the Galois extension E/Q with
group G , n = |G |, to admit the Hopf-Galois structure ((QCn)∗, ·)
of type Cn.

I would like to thank Tim Kohl for discussions regarding papers [6],
[12].
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2. Hopf Forms of KN

Let F be a finite group. An F -Galois extension of K is a
commutative K -algebra L that satisfies

(i) F is a subgroup of AutK (L),

(ii) L is a finitely generated, projective K -module,

(iii) F ⊆ EndK (L) is a free generating system over K .

The notion of F -Galois extension generalizes the usual definition of
a Galois extension of fields.
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The K -algebra of maps Map(F ,K ) is the trivial F -Galois
extension of K where the action of F on Map(F ,K ) is given as

g(φ)(h) = φ(g−1h)

for g , h ∈ F , φ ∈ Map(F ,K ).

We let Gal(K ,F ) denote the collection of all F -Galois extensions
of K .
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Let N be a finite group. Then the group ring KN is a K -Hopf
algebra.

Let L be a faithfully flat K -algebra. An L-Hopf form of KN is a
K -Hopf algebra H for which

L⊗K H ∼= L⊗K KN ∼= LN

as L-Hopf algebras.
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A Hopf form of KN is a K -Hopf algebra H for which there exists
a faithfully flat K -algebra L with

L⊗K H ∼= L⊗K KN ∼= LN

as L-Hopf algebras.

The trivial Hopf form of KN is KN.

Let Hopf (KN) denote the collection of all Hopf forms of KN.
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R. Haggenmüller and B. Pareigis [6, Theorem 5] have classified all
Hopf forms of KN.

Theorem 1 (Haggenmüller and Pareigis).

Let N be a finite group and let F = Aut(N). There is a bijection

Θ : Gal(K ,F )→ Hopf (KN)

which associates to each F -Galois extension L of K , the Hopf form
H = Θ(L) of KN defined as

H = (LN)F ,

where the action of F on N is through the automorphism group
F = Aut(N) and the action of F on L is the Galois action. The
Hopf form H is an L-Hopf form of KN with isomorphism
ψ : L⊗K H → LN defined as ψ(x ⊗ h) = xh.
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Proposition 2.

Let N be a finite group, let F = Aut(N), and let L = Map(F ,K ).
Then

Θ(L) = (LN)F ∼= KN.

Proof (Sketch).

H = (LN)F has a K -basis consisting of group-like elements.
Hence, H = KN ′ for some finite group N ′. Since
L⊗K H = L⊗K KN ′ ∼= LN as Hopf algebras, we conclude that
N ′ ∼= N.
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Remark 3.
The proposition above shows that

Map(F ,K ) = Θ−1(KN).

In general, given a Hopf form H of KN it is not clear (at least to
this author) how to explicitly construct an element L ∈ Gal(K ,F )
for which Θ(L) = H.
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3. The Absolutely Semisimple Hopf Form of KCn

Let N = Cn. By Maschke’s theorem, KCn is semisimple. Extending
scalars to C yields the Wedderburn-Artin decomposition

CCn = C⊗K KCn
∼= C× C× · · · × C︸ ︷︷ ︸

n

.

Let L be a separable K -algebra. Then any L-Hopf form of KCn is
also semisimple. An L-Hopf form H of KCn is absolutely
semisimple if

H = K × K × · · · × K︸ ︷︷ ︸
n

.
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Absolutely semisimple Hopf forms of KCn always exist [12,
Theorem 4.3].

Theorem 4 (Pareigis).

KCn has a uniquely determined absolutely semisimple Hopf form
H = (KCn)∗, where (KCn)∗ is the linear dual of KCn.

As a Hopf form of KCn, (KCn)∗ comes from some F -Galois
extension L. Here is how we can find L.
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Proposition 5.

Let Φn(x) denote the nth cyclotomic polynomial and let
F = Aut(Cn) = Z∗n. Then L = K [x ]/(Φn(x)) is an F -Galois
extension of K and

Θ(L) = (LCn)F = (KCn)∗ = K × K × · · · × K︸ ︷︷ ︸
n

.

Proof (Sketch).

We have
LCn
∼= L× L× · · · × L︸ ︷︷ ︸

n

.

The action of F fixes each idempotent, and so,

(LCn)F ∼= K × K × · · · × K︸ ︷︷ ︸
n

.

(See the discussion after the proof of [12, Theorem 4.3].)
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Remark 6.
K [x ]/(Φn(x)) is not necessarily a field. For example, if K = Q(ζ3),
then

K [x ]/(Φ15(x)) ∼= K (ζ15)× K (ζ15).

The faithfully flat (separable) K -algebra K (ζ15)× K (ζ15) is an
F = Z∗15 = (C2 × C4)-Galois extension of K corresponding to
(KC15)∗.

If K = Q, then Q[x ]/(Φn(x)) is a field, isomorphic to Q(ζn); Q(ζn)
is a Galois extension of Q with group Z∗n. In the case that n = p is
a prime, we restate Proposition 5 and give a detailed proof.
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Proposition 7.

Let ζp denote a primitive pth root of unity and let L = Q(ζp).
Then

Θ(L) = (LCp)F = (QCp)∗,

where F = Aut(Cp) = Z∗p.

Proof.

Let Cp = 〈σ〉 and let r ∈ Z∗p be a primitive root modulo p. Let
ζ = ζp. Then L = Q(ζ) is Galois with group Z∗p ∼= Cp−1 = 〈g〉.

The Galois action is given as g i (ζ) = ζr
i

and the action of

Z∗p = Aut(Cp) on Cp is given as g i (σ) = σr
i
.

A typical element of LCp is
∑p−1

i=0

(∑p−2
j=0 αijζ

j
)
σi for αij ∈ Q. To

be in (LCp)F , we require that
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gk

p−1∑
i=0

p−2∑
j=0

αijζ
j

σi

 =

p−1∑
i=0

p−2∑
j=0

αijζ
rk j

σrk i =

p−1∑
i=0

p−2∑
j=0

αijζ
j

σi ,

for 0 ≤ k ≤ p − 2.

Thus, (LCp)F is generated as a Q-algebra by the quantities

Xi =

p−2∑
j=0

ζ ir
j

σr j

for 0 ≤ i ≤ p − 2.
And as is well-known, the quantities

{(1 +X0)/p, (1 +X1)/p, . . . , (1 +Xp−2)/p, (1−X0−X1−· · ·−Xp−2)/p}

are the p minimal orthogonal idempotents for (QCp)∗.

�
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Proposition 8.

Let (QCp)∗ be the absolutely semisimple Hopf form of QCp.

(i) As Q-algebras,

(QCp)∗ ∼= Q[X0,X1, . . . ,Xp−2]/I

where I is the ideal of Q[X0,X1, . . . ,Xp−2] generated by

{(Xi − (p − 1))(Xi + 1)}, 0 ≤ i ≤ p − 2

and
{(Xi + 1)(Xj + 1)}, 0 ≤ i , j ≤ p − 2, i < j .
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(ii) The Q-Hopf algebra structure of (QCp)∗ is given as

ε(X0) = p − 1,

ε(X1) = ε(X2) = · · · = ε(Xp−2) = −1,

S(X0) = X0,

S(X1) = −
p−2∑
i=0

Xi ,

S(Xi ) = Xp−i , 2 ≤ i ≤ p − 2,

and, with Xp−1 = S(X1),

∆(Xi ) =

1

p

p−1∑
j=0

(1 + Xp−j)⊗ (1 + Xi+j)

− (1⊗ 1),

for 0 ≤ i ≤ p − 2, where the subscripts are taken modulo p.
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Proof.
For (i): The linear dual (QCp)∗ is generated as a Q-algebra by
X0,X1, . . . ,Xp−2. For 0 ≤ i ≤ p − 2,(

Xi + 1

p

)(
Xi + 1

p

)
=

Xi + 1

p
.

Thus
(Xi + 1)(Xi + 1) = p(Xi + 1),

hence
(Xi − (p − 1))(Xi + 1) = 0, 0 ≤ i ≤ p − 2.

For 0 ≤ i , j ≤ p − 2, i < j ,(
Xi + 1

p

)(
Xj + 1

p

)
= 0,

hence

(Xi + 1)(Xj + 1) = 0, 0 ≤ i , j ≤ p − 2, i < j .

For (ii): The dual (QCp)∗ is a Q-Hopf form of QCp with Hopf
structure induced from that of LCp, L = Q(ζp).

�
22 / 57



Example 9.

Let C5 = 〈σ〉 = {1, σ, σ2, σ3, σ4}. Then

Aut(C5) = C4 = 〈g〉 = {1, g , g2, g3},

with action given as

1(σ) = σ, g(σ) = σ2, g2(σ) = σ4, g3(σ) = σ3.

Let Φ5(x) = x4 + x3 + x2 + x + 1 be the 5th cyclotomic
polynomial. Then

L = Q[x ]/(Φ5(x)) = Q(ζ5);

L is Galois with group C4, with Galois action given as g(ζ) = ζ2.
The absolutely semisimple Hopf form of QC5 is

Θ(L) = (LC5)C4 = (QC5)∗.
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As a Q-algebra, (QC5)∗ is generated by

X0 = σ + σ2 + σ4 + σ3, X1 = ζσ + ζ2σ2 + ζ4σ4 + ζ3σ3,

X2 = ζ2σ + ζ4σ2 + ζ3σ4 + ζσ3, X3 = ζ3σ + ζσ2 + ζ2σ4 + ζ4σ3.

We have
(QC5)∗ = Q[X0,X1,X2,X3]/I ,

where the ideal I is generated by

(X0−4)(X0+1), (X1−4)(X1+1), (X2−4)(X2+1), (X3−4)(X3+1),

(X0 + 1)(X1 + 1), (X0 + 1)(X2 + 1), (X0 + 1)(X3 + 1),

(X1 + 1)(X2 + 1), (X1 + 1)(X3 + 1),

(X2 + 1)(X3 + 1).
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The Hopf algebra structure of (QC5)∗ is given by

ε(X0) = 4, ε(X1) = ε(X2) = ε(X3) = −1,

S(X0) = X0, S(X1) = −X0 − X1 − X2 − X3,

S(X2) = X3, S(X3) = X2,

and

∆(X0) =
1

5
(1 + X0)⊗ (1 + X0) +

1

5
(1− X0 − X1 − X2 − X3)⊗ (1 + X1)

+
1

5
(1 + X3)⊗ (1 + X2) +

1

5
(1 + X2)⊗ (1 + X3)

+
1

5
(1 + X1)⊗ (1− X0 − X1 − X2 − X3)− 1⊗ 1,

∆(X1) =
1

5
(1 + X0)⊗ (1 + X1) +

1

5
(1− X0 − X1 − X2 − X3)⊗ (1 + X2)

+
1

5
(1 + X3)⊗ (1 + X3) +

1

5
(1 + X2)⊗ (1− X0 − X1 − X2 − X3)

+
1

5
(1 + X1)⊗ (1 + X0)− 1⊗ 1,

25 / 57



∆(X2) =
1

5
(1 + X0)⊗ (1 + X2) +

1

5
(1− X0 − X1 − X2 − X3)⊗ (1 + X3)

+
1

5
(1 + X3)⊗ (1− X0 − X1 − X2 − X3) +

1

5
(1 + X2)⊗ (1 + X0)

+
1

5
(1 + X1)⊗ (1 + X1)− 1⊗ 1,

∆(X3) =
1

5
(1 + X0)⊗ (1 + X3)

+
1

5
(1− X0 − X1 − X2 − X3)⊗ (1− X0 − X1 − X2 − X3)

+
1

5
(1 + X3)⊗ (1 + X0) +

1

5
(1 + X2)⊗ (1 + X1)

+
1

5
(1 + X1)⊗ (1 + X2)− 1⊗ 1.
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4. The Group of Points

Let
(QCp)∗ = Q[X0,X1, . . . ,Xp−2]/I

be the absolutely semisimple Hopf form of QCp. Let V be the set
of common zeros of the polynomials in the ideal I .

V consists of p points of Qp−1

P1,P2, . . . ,Pp−1,Pp

where for 1 ≤ i ≤ p − 1, Pi is the point that has p − 1 in the ith
component and −1 elsewhere, and Pp has −1 in each component.
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Let
G = HomQ-alg((QCp)∗,−)

be the Q-group scheme represented by (QCp)∗.

It is well-known that there is a group isomorphism

G(Q) = V ∼= Cp

defined by X i 7→ xi , where xi is the ith component of P ∈ V ,
1 ≤ i ≤ p − 1 [14, Section 1.2, Theorem], [14, Section 2.3].

In more detail: V is endowed with a binary operation (point
addition) induced from comultiplication. Point addition is defined
as follows.
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For P = (x0, x1, . . . , xp−2), Q = (y0, y1, . . . , yp−1) in V ,

P + Q = R = (z0, z1, . . . , zp−2),

where

z0 =
1

p
((1 + x0)(1 + y0) + (1−

p−2∑
i=0

xi )(1 + y1) + (1 + xp−2)(1 + y2)

+ · · ·+ (1 + x2)(1 + yp−2) + (1 + x1)(1−
p−2∑
i=0

yi )− 1,

...

zp−2 =
1

p
((1 +x0)(1 +yp−2) + (1−

p−2∑
i=0

xi )(1−
p−2∑
i=0

yi ) + (1 +xp−2)(1 +y0)

+(1 + xp−3)(1 + y1) + · · ·+ (1 + x1)(1 + yp−3))− 1.
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The identity element in V is the point

O = P1 = (ε(X0), ε(X1), ε(X2), . . . , ε(Xp−2))

= (p − 1,−1,−1, . . . ,−1);

the inverse of the point P = (x0, x1, x2, . . . , xp−3, xp−2) ∈ V is

−P = (S(X0),S(X1),S(X2), . . . ,S(Xp−2)

= (x0,−
p−2∑
i=0

xi , xp−2, xp−3, . . . , x3, x2),

where we identify S(Xi ) with its image under the Q-algebra
homomorphism X i 7→ xi .

Thus V is a group with p elements, which must be isomorphic to
Cp.
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Example 10.

From Example 9

(QC5)∗ = Q[X0,X1,X2,X3]/I

is the absolutely semisimple Hopf form of QC5. The set of
common zeros of the polynomials in I is

V = {(4,−1,−1,−1), (−1, 4,−1,−1), (−1,−1, 4,−1),

(−1,−1,−1, 4), (−1,−1,−1,−1)},

with V ∼= C5, where V is endowed with point addition.

The identity element is O = P1 = (4,−1,−1,−1), the inverse of
P2 = (−1, 4,−1,−1) is P5 = (−1,−1,−1,−1), and the inverse of
P3 = (−1,−1, 4,−1) is P4 = (−1,−1,−1, 4).
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For instance,

P3 + O = (−1,−1, 4,−1) + (4,−1,−1,−1)

= (−1,−1, 4,−1)

= P3,

and

2P2 = 2(−1, 4,−1,−1)

= (−1, 4,−1,−1) + (−1, 4,−1,−1)

= (−1,−1, 4,−1)

= P3.
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5. Connection to Hopf-Galois Theory

5.1 Brief Review of Greither-Pareigis
Let E/K be a Galois extension with group G . Let H be a finite
dimensional, cocommutative K -Hopf algebra.

Suppose there is a K -linear action · of H on E that satisfies

h · (xy) =
∑
(h)

(h(1) · x)(h(2) · y), h · 1 = ε(h)1

for all h ∈ H, x , y ∈ E , where ∆(h) =
∑

(h) h(1) ⊗ h(2) is Sweedler
notation. Suppose also that the K -linear map

j : E ⊗K H → EndK (E ), j(x ⊗ h)(y) = x(h · y)

is an isomorphism of vector spaces over K . Then H together with
this action, denoted as (H, ·), provides a Hopf-Galois structure
on E/K .
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Two Hopf-Galois structures (H1, ·1), (H2, ·2) on E/K are
isomorphic if there is a Hopf algebra isomorphism f : H1 → H2 for
which h ·1 x = f (h) ·2 x for all x ∈ E , h ∈ H (see [4, Introduction]).

C. Greither and B. Pareigis [5] have given a complete classification
of Hopf-Galois structures up to isomorphism.

Theorem 11 (Greither and Pareigis).

Let E/K be a Galois extension with group G . There is a
one-to-one correspondence between isomorphism classes of Hopf
Galois structures on E/K and regular subgroups of Perm(G ) that
are normalized by λ(G ).
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One direction of this correspondence works by Galois descent:

Let N be a regular subgroup of Perm(G ) normalized by λ(G ); G
acts on the group algebra EN through the Galois action on E and
conjugation by λ(G ) on N, i.e.,

g(xη) = g(x)(gη), g ∈ G , x ∈ E , η ∈ N.

where gη denotes the conjugation action of λ(g) ∈ λ(G ) on η ∈ N.

Let
H = (EN)G = {x ∈ EN : g(x) = x ,∀g ∈ G}.

be the fixed ring H under the action of G . Then H is an
n-dimensional E -Hopf algebra, n = [E : K ], and E/K admits the
Hopf Galois structure (H, ·).
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By [5, p. 249, proof of 3.1, (a) =⇒ (b)],

E ⊗K H ∼= E ⊗K KN ∼= EN,

as E -Hopf algebras, so H is an E -form of KN.

Let N be a regular subgroup of Perm(G ) normalized by λ(G ), and
let (H, ·) be the corresponding Hopf-Galois structure. If N is
isomorphic to the abstract group N ′, then we say that the
Hopf-Galois structure (H, ·) on E/K is of type N ′.
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5.2 Hopf Forms and Hopf-Galois Structures

If (H, ·) is a Hopf-Galois structure on E/K of type N, then the
Hopf algebra H is a Hopf form of KN. Thus H can be recovered
via Theorem 1. In other words, with F = Aut(N), there is an
F -Galois extension L of K with

Θ(L) = H = (LN)F .

As we have noted (Remark 3), it is not clear how to compute the
required L; the inverse map

Θ−1 : Hopf (KN)→ Gal(K ,F )

is not given explictly.
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Here is one way to find L.

Proposition 12.

Let E/K be a Galois extension with group G . Let (H, ·) be a
Hopf-Galois structure corresponding to regular subgroup N. Let
F = Aut(N), let

W = {g ∈ λ(G ) : gη = η,∀η ∈ N},

and let L = EW . If W is a normal subgroup of λ(G ) with
λ(G )/W ∼= F , then Θ(L) = H.

Proof.
By the Fundamental theorem of Galois theory, L = EW is Galois
with group F ∼= λ(G )/W , so L is an F -Galois extension. Now,

H = (EN)G = (LN)F ,

and so, Θ(L) = H.
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Example 13.

We consider the splitting field E of the polynomial x4 − 10x2 + 1
over Q. One has E = Q(

√
2,
√

3); E/Q is Galois with group
C2 × C2 = {1, σ, τ, τσ} with Galois action

σ(
√

2) =
√

2, σ(
√

3) = −
√

3, τ(
√

2) = −
√

2, τ(
√

3) =
√

3.

By [1], there are three Hopf-Galois structures on E/Q of type C4,
each of which is determined by a regular subgroup N ∼= C4

normalized by λ(C2 × C2). One such N is given as

N = {(1), (1, 3, 2, 4), (1, 2)(3, 4), (1, 4, 2, 3)},

where 1 := 1, 2 := σ, 3 := τ , 4 := τσ, and

λ(C2 × C2) = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

N is a regular subgroup of Perm(C2 × C2) normalized by
λ(C2 × C2) with N ∼= C4.

39 / 57



Let (H, ·) be the corresponding Hopf-Galois extension with
H = (EN)G .

As one can check

W = {g ∈ λ(C2×C2) : gη = η,∀η ∈ N} = {(1), (1, 2)(3, 4)} = {1, σ}.

We have G/W ∼= F = Aut(C4) ∼= C2, and the fixed field
L = EW = Q(

√
2) is an F -Galois extension of Q.

So by Proposition 12, Θ(L) = H.
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6. Absolutely Semisimple Hopf-Galois Structures

Let E/Q be Galois with group G , n = |G |.

When does E/Q admit a Hopf-Galois structure whose Hopf
algebra is the absolutely semisimple Hopf form (QCn)∗ of QCn?

Proposition 14.

Let E/Q be a Galois extension with group G , n = |G |. Suppose
E/Q admits the Hopf-Galois structure ((QCn)∗, ·). Then φ(n) | n,
where φ is Euler’s function.
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Proof.
Let N be the regular subgroup of Perm(G ) normalized by λ(G )
that corresponds to ((QCn)∗, ·). Then

E ⊗Q (QCn)∗ ∼= EN

as Hopf algebras. Thus (QCn)∗ is an E -Hopf form of QN and
E ⊗Q (QCn)∗ ∼= (ECn)∗ ∼= EN, as E -Hopf algebras. The dual
(ECn)∗ decomposes as E × E × · · · × E︸ ︷︷ ︸

n

, thus

EN ∼= E × E × · · · × E︸ ︷︷ ︸
n

, and so, (EN)∗ ∼= EN, as Hopf algebras.

Hence, EN ∼= ECn as E -Hopf algebras, and so, Cn
∼= N. We

conclude that E contains Q[x ]/(Φn(x)). Thus E contains a
subfield of degree φ(n) over Q. Hence φ(n) | n.
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Proposition 15.

Let n > 2. Then φ(n) | n if and only if n = 2a3b where a > 0,
b ≥ 0.

Proof.
Suppose that φ(n) | n. Let n = pe11 pe22 · · · p

ek
k , where pi are distinct

primes, and ei > 0. Then

φ(n) = (p1 − 1)pe1−11 (p2 − 1)pe2−12 · · · (pk − 1)pek−1k .

Since n > 2, φ(n) is even, and so, n is even. Thus, p1 = 2 in the
prime factorization of n. Suppose that n has two odd prime factors
pi , pj . Since ei , ej > 0, both pi − 1 and pj − 1 are even, and so,
2e1+1 | φ(n), hence 2e1+1 | n, which is a contradiction. Thus, n has
only one odd prime factor, say p, hence n = 2e1pe , e > 0. Now,
(p − 1) | φ(n), thus (p − 1) | n. Consequently, (p − 1) = 2r for
some r > 0 and 2e1−1+r | φ(n), thus 2e1−1+r | n. It follows that
r = 1 and so p = 3. Hence n = 2a3b where a, b > 0.
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For the converse, suppose that n = 2a3b, a > 0, b ≥ 0. If b = 0,
then φ(n) = 2a−1 which divides n. If b > 0, then
φ(n) = 2a−1 · 2 · 3b−1 = 2a3b−1 which divides n.

�

Proposition 14 and Proposition 15 yield necessary conditions for
the Galois extension E/Q with group G , n = |G |, to admit the
Hopf-Galois structure ((QCn)∗, ·), namely,

(i) n = 2a3b, a > 0, b ≥ 0,
(ii) E/Q admits a Hopf-Galois structure of type Cn.
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Example 16.

Consider the splitting field E of the polynomial x4 − 2x2 + 9 over
Q. We show that E/Q admits the Hopf-Galois structure
((QC4)∗, ·). We have E = Q(

√
−1,
√

2); E/Q is Galois with group
C2 × C2 = {1, σ, τ, τσ} with Galois action

σ(
√
−1) =

√
−1, σ(

√
2) = −

√
2,

τ(
√
−1) = −

√
−1, τ(

√
2) =

√
2.

Note that n = 4 = 2230. As in Example 13, there are three
Hopf-Galois structures on E/Q of type C4, one of them is given by
the regular subgroup

N = {(1), (1, 3, 2, 4), (1, 2)(3, 4), (1, 4, 2, 3)}.

Let (H, ·) be the Hopf-Galois structure determined by N,
H = (EN)C2×C2 .
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As in Example 13,

W = {g ∈ λ(C2×C2) : gη = η,∀η ∈ N} = {(1), (1, 2)(3, 4)} = {1, σ}.

Thus W is a normal subgroup of λ(C2 × C2) with
G/W ∼= C2

∼= F = Aut(C4).

We have L = EW = Q(
√
−1), thus L is F -Galois. Hence by

Proposition 12,
Θ(L) = H.

But L = Q(ζ4), and so, Θ(L) = H = (QC4)∗ by Proposition 5.
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Example 17.

We take E/Q to be the splitting field of x3 − 2 over Q, then
n = 6 = 2 · 3. As shown in [8, Section 7], E/Q admits a
Hopf-Galois structure of type C6 whose Hopf algebra is the
absolutely semisimple Hopf form (QC6)∗ of QC6.

Remark 18.
Recently, T. Kohl [9] has determined whether or not a Galois
extension with group G , n = |G |, admits a Hopf-Galois structure
of type Cn for various G . For example, if E/Q is Galois with group
A4, then there are no Hopf-structures of type C12. Thus E/Q
cannot have a Hopf-Galois structure with Hopf algebra (QC12)∗.
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Remark 19 (Galois theoretical embedding problem).

[10, Introduction]. Let L = Q(ζn), n > 2, be the Galois extension
of Q with group Z∗n = Aut(Cn). Does there exist a Galois
extension E/Q with group G , and a short exact sequence of groups

1→ T → G → Z∗n → 1,

so that ET = Q(ζn)? If this is the case, suppose further that E/Q
admits a Hopf-Galois structure corresponding to regular subgroup
N ∼= Cn, with

W = {g ∈ λ(G ) : gη = η,∀η ∈ N} = T .

Then E/Q admits the Hopf-Galois structure ((QCn)∗, ·).
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Remark 20.
Regarding Remark 19, perhaps the Galois theoretical embedding
problem would be easier to solve if n = 2 · 3b, b > 0. For then Z∗n
is cyclic of order φ(n) [7, Proposition 4.1.3].
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7. Some Questions

Question 21.
Consider the construction of the absolutely semisimple Hopf form
(QCp)∗ of Proposition 7. Suppose that the Q-basis for L = Q(ζ) is
changed to the normal basis on the generator −ζ, i.e.,

{−ζ, g(−ζ), g2(−ζ), . . . , gp−2(−ζ)},

or to some other Q-basis given by powers of a + bζ, a, b ∈ Q. How
does this change of basis affect the generators and relations of
(QCp)∗ and the points of the variety V ?
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Question 22.
Given two Hopf forms H, H ′ of KCn when do we have H ∼= H ′ as
K -Hopf algebras? as K -algebras? (This is analogous to the
question for Hopf-Galois structures.)
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Question 23 (Pareigis).

Let N be any finite group. By Maschke’s theorem, QN is
semisimple. Extending scalars to C yields the Wedderburn-Artin
decomposition

CN ∼= Matn1(C)×Matn2(C)× · · · ×Matnl (C).

A Hopf form H of QN is absolutely semisimple if

H ∼= Matn1(Q)×Matn2(Q)× · · · ×Matnl (Q).

For which groups N does QN admit an absolutely semisimple Hopf
form?
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We address this question for various groups. First we consider
abelian groups, then non-abelian groups.

Example 24.

Let N = Cn, n ≥ 1. By Theorem 4, (QCn)∗ ∼= Qn is the absolutely
semisimple Hopf form of QCn. By Proposition 5, Θ(L) = (QCn)∗,
where L = Q(ζn).

Example 25.

Let N = Cn
p , p ≥ 2, n ≥ 1; Cn

p is the elementary abelian group of
order pn. Then QCn

p admits the absolutely semisimple Hopf form

(QCn
p )∗ ∼= Qpn .
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So there is an Aut(Cn
p )-Galois extension L/Q for which

Θ(L) = (QCn
p )∗.

What is the structure of L?

Proposition 26.

Let

L = Q(ζp)

∏n−1
i=0

(pn−pi )

p−1 .

Then L is an Aut(Cn
p )-Galois extension of Q with Θ(L) = (QCn

p )∗.
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Proof.
(Sketch) Aut(Cn

p ) = GLn(Fp) and

|GLn(Fp)| =
n−1∏
i=0

(pn − pi ).

For 1 ≤ j ≤ n, there is a subgroup Uj of GLn(Fp) given as

Uj = {diag(1, . . . , 1, a(j), 1, . . . , 1) : a(j) ∈ F∗p} ∼= F∗p.

The index is [GLn(Fp) : Uj ] = (
∏n−1

i=0 (pn − pi ))/(p − 1); Q(ζp) is
a Uj -Galois extension of fields. Thus by [12, Theorem 4.2],

L = Q(ζp)

∏n−1
i=0

(pn−pi )

p−1

is GLn(Fp)-Galois. Moreover, Θ(L) = (QCn
p )∗.
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Example 27.

Let N = D3. Then

QD3
∼= Q×Q×Mat2(Q).

Thus QD3 is an absolutely semisimple Hopf form of itself.

Example 28.

Let N = D4. Then

QD4
∼= Q×Q×Q×Q×Mat2(Q).

Thus QD4 is an absolutely semisimple Hopf form of itself.
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Example 29.

Let N = Q8, the quaternion group. We have

CQ8
∼= C× C× C× C×Mat2(C),

yet
QQ8

∼= Q×Q×Q×Q×H,

where H is the rational quaternions. Thus QQ8 is not an
absolutely semisimple form of itself.

Does QQ8 admit an absolutely semisimple Hopf form?
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