Hopf Forms and Hopf-Galois Theory

Robert G. Underwood
Department of Mathematics
Department of Computer Science
Auburn University at Montgomery
Montgomery, Alabama

!

AUBURN

May 30, 2020

1/57



1. Introduction

Let K be a field containing Q and let N be a finite group with
automorphism group F = Aut(N). R. Haggenmiiller and B.
Pareigis have shown that there is a bijection

© : Gal(K, F) — Hopf(KN)

from the collection of F-Galois extensions of K to the collection of
Hopf forms of the group ring KN. In more detail, if L is an
F-Galois extension of K, then the corresponding K-Hopf form is
the fixed ring

O(L) = H = (LN)F

[6, Theorem 5].
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Let N = C, denote the cyclic group of order n. If n =2, then F is
trivial and KGC; is the only Hopf form of KC,. For the cases
n=3,4,6,

F=Aut(C,) =7, = G.

The C>-Galois extensions of K are completely classified as the
quadratic extensions L = K[x]/(x? — b), where b € K* [13]. Thus
the result of Haggenmiiller and Pareigis yields an explicit
description of all Hopf forms of KC, for the cases n = 3,4,6 [6,
Theorem 6].

In the cases n # 2, 3,4, 6, the F-Galois extensions of K (and
consequently) the Hopf forms of KC, seem difficult to compute.
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So it is of interest to investigate the structure of Hopf forms of
KC, for n > 2.

Two special Hopf forms of KC,, can be identified.

1. The trivial Hopf form KC,, which is the image under © of the
trivial F-Galois extension Map(F, K) of K; if L = Map(F, K), then

O(L) = KC,.
2. The linear dual (KC,)*, which is the absolutely semisimple Hopf

form of KC,,. If L = K[x]/(®n(x)), where ®,(x) is the nth
cyclotomic polynomial, then L is a Zj}-Galois extension of K and

O(L) = (KC,)*.
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In the case that K = Q and n = p is prime, we obtain an explicit
description of (QCp)*.

The Hopf form (QC,)* is the ring of regular functions on an affine

variety in QP~1. The variety is isomorphic to Cp as a group of
points, which could be of interest in other applications.
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There is a natural application of © to Hopf-Galois theory:

Let (H,-) be a Hopf-Galois structure of type N on the Galois
extension of fields E/K. Then H is a Hopf form of KN and thus

o(L)=H
for some F-Galois extension L of K, F = Aut(N).

We show how to construct L as a subfield of E under certain
conditions.

We identify necessary conditions for the Galois extension E/Q with
group G, n = |G|, to admit the Hopf-Galois structure ((QC,)*, )
of type C,.

| would like to thank Tim Kohl for discussions regarding papers [6],
[12].
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2. Hopf Forms of KN

Let F be a finite group. An F-Galois extension of K is a
commutative K-algebra L that satisfies

(i) F is a subgroup of Autk(L),
(ii) L is a finitely generated, projective K-module,
(iii) F € Endk(L) is a free generating system over K.

The notion of F-Galois extension generalizes the usual definition of
a Galois extension of fields.
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The K-algebra of maps Map(F, K) is the trivial F-Galois
extension of K where the action of F on Map(F, K) is given as

g(¢)(h) = ¢(g~'h)
for g,h € F, ¢ € Map(F, K).

We let Gal(K, F) denote the collection of all F-Galois extensions
of K.
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Let N be a finite group. Then the group ring KN is a K-Hopf
algebra.

Let L be a faithfully flat K-algebra. An L-Hopf form of KN is a
K-Hopf algebra H for which

Lok H=Z Lok KN = LN

as L-Hopf algebras.
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A Hopf form of KN is a K-Hopf algebra H for which there exists
a faithfully flat K-algebra L with

Lok H=Z Lok KN = LN

as L-Hopf algebras.
The trivial Hopf form of KN is KN.

Let Hopf(KN) denote the collection of all Hopf forms of KN.
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R. Haggenmiiller and B. Pareigis [6, Theorem 5] have classified all
Hopf forms of KN.

Theorem 1 (Haggenmiiller and Pareigis).
Let N be a finite group and let F = Aut(N). There is a bijection

© : Gal(K, F) — Hopf(KN)

which associates to each F-Galois extension L of K, the Hopf form
H = ©(L) of KN defined as

H = (LN)F,

where the action of F on N is through the automorphism group
F = Aut(N) and the action of F on L is the Galois action. The
Hopf form H is an L-Hopf form of KN with isomorphism

Y Lok H— LN defined as ¢(x ® h) = xh.
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Proposition 2.
Let N be a finite group, let F = Aut(N), and let L = Map(F, K).
Then

(L) = (LN)F = KN.

Proof (Sketch).

H = (LN)F has a K-basis consisting of group-like elements.
Hence, H = KN’ for some finite group N’. Since

Lok H=L®Kk KN'= LN as Hopf algebras, we conclude that

N = N. []
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Remark 3.

The proposition above shows that
Map(F,K) = @ 1(KN).

In general, given a Hopf form H of KN it is not clear (at least to
this author) how to explicitly construct an element L € Gal(K, F)
for which ©(L) = H.
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3. The Absolutely Semisimple Hopf Form of KC,

Let N = C,. By Maschke’s theorem, KC, is semisimple. Extending
scalars to C yields the Wedderburn-Artin decomposition

CC,=Cox K, 2CxCx---xC.

n

Let L be a separable K-algebra. Then any L-Hopf form of KC, is
also semisimple. An L-Hopf form H of KC, is absolutely
semisimple if

H=KxKx---xK.

n
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Absolutely semisimple Hopf forms of KC, always exist [12,
Theorem 4.3].
Theorem 4 (Pareigis).

KC,, has a uniquely determined absolutely semisimple Hopf form
H = (KC,)*, where (KC,)* is the linear dual of KC,,.

As a Hopf form of KC,, (KC,)* comes from some F-Galois
extension L. Here is how we can find L.
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Proposition 5.
Let ®,(x) denote the nth cyclotomic polynomial and let

F = Aut(C,) = Z*. Then L = K[x]/(®n(x)) is an F-Galois
extension of K and
e(L):(LCn)F:(KCn)*:KX Kx. ---x K.

n

Proof (Sketch).

We have
LC, =L xLx---xL.
|

n

The action of F fixes each idempotent, and so,

(LC)F=2KxKx---xK.

n

(See the discussion after the proof of [12, Theorem 4.3].) O
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Remark 6.
K[x]/(®n(x)) is not necessarily a field. For example, if K = Q((3),
then

KX/ (®15(x)) = K(Ci5) x K(Cas)-

The faithfully flat (separable) K-algebra K((15) x K((15) is an
F =Zis = (G x G4)-Galois extension of K corresponding to
(KCis)*.

If K=Q, then Q[x]/(®n(x)) is a field, isomorphic to Q(¢n); Q(¢n)
is a Galois extension of QQ with group Zj. In the case that n = p is
a prime, we restate Proposition 5 and give a detailed proof.
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Proposition 7.

Let {, denote a primitive pth root of unity and let L = Q((p).
Then
O(L) = (L) = (QG),

where F = Aut(Cp) = Zj,.

Proof.
Let C, = (o) and let r € Zj, be a primitive root modulo p. Let
¢ = (p. Then L = Q(¢) is Galois with group Z; >~ Coo1 = (g).

The Galois action is given as g/(¢) = ¢cr and the action of
= Aut(C,) on C, is given as g'(0) = 0" .

A typical element of LG, is > P~ <Zp o aUCJ) o' for ajj € Q. To
be in (LC,)F, we require that
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for0< k<p-2.

Thus, (LC,)F is generated as a Q-algebra by the quantities

p—2
X; = Z Clrlar’
j=0

for0<i<p-2.
And as is well-known, the quantities

{1+ X0)/p, (1+X1)/p, - (1 +Xp2)/p, (1= Xo = Xy =+ = X,p—2)/ P}

are the p minimal orthogonal idempotents for (QC,)*.
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Proposition 8.
Let (QCp)* be the absolutely semisimple Hopf form of QC,.

(i) As Q-algebras,
(QG)" = Q[Xo, X1, ..., Xp—2]/I
where | is the ideal of Q[Xp, X1, ..., Xp—2] generated by
(= (p—1)XG+1)}, 0<i<p—2

and
{Xi+1)(X;+1)}, 0<ij<p—2, i<j.
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(ii) The Q-Hopf algebra structure of (QCp)* is given as

e(Xo) =p—1,
e(X1) = e(X2) = -+ = e(Xp2) = -1,
S5(Xo) = Xo,

p—2
S(X) =-Y_X,
i=0

S(Xi) =Xp—iy, 2<i<p-—2,
and, with X,_1 = S(X1),

o

p—1
A(X) = (1 d 1+ X))@ (1+ Xi+j)) - (1®1),

Jj=0

for 0 < i < p — 2, where the subscripts are taken modulo p.
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Proof.
For (i): The linear dual (QC,)* is generated as a Q-algebra by
Xo,Xl,...,Xp_Q. For O < i < p—2,

(:)(} + 1:> (:)(i + 1:) _ Xi+1
p p p

(Xi + 1)(Xi + 1) = p(Xi + 1),

Thus

hence
Xi—(p=1)(X;+1)=0, 0<i<p-—2.

For0<i,j<p—2i<},
<X,-+1> <Xj+1) 0
p p ’

For (ii): The dual (QC,)* is a Q-Hopf form of QC, with Hopf
structure induced from that of LC,, L = Q((p).

hence
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Example 9.
Let G5 = (o) = {1,0,02,03,0*}. Then

AUt(C5) = C4 = <g> = {17g7g2ag3}7

with action given as

o) =0, glo)=0° g*0)=0* g°(0)=0".

Let ®5(x) = x* + x> + x? + x + 1 be the 5th cyclotomic
polynomial. Then

L = Q[x]/(®s(x)) = Q(C5);

2

L is Galois with group C4, with Galois action given as g(¢) = ¢*.

The absolutely semisimple Hopf form of QCs is

O(L) = (LGs)™ = (QGs)*.
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As a Q-algebra, (QGs)* is generated by
Xo=0+02+0*+03 Xi=Co+o?+ ot + 303,
X2:<2O'—|—<40'2+<30'4+C0'3, X3:<30'+<O'2+<20'4+<40'3.

We have
((@C5)>'< — @[XOaXI)X27X3]//)

where the ideal | is generated by
(Xo—4)(Xo+1), (X1—4)(X1+1), (Xo—4)(X2+1), (X3—4)(Xs+1),

(Xo+1)(X1+1), (Xo+1)(Xa+1), (Xo+1)(Xs+1),
(X1 +1)(X2+1), (Xp+1)(X3+1),
(Xo+1)(X3 +1).
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The Hopf algebra structure of (QCs)* is given by
E(Xg) = 4, €(X1) = 6(X2) = 6(X3) = —1,
S(Xo) = Xo, S(X1) = —Xo — X1 — Xo — Xa,
S(XQ) = X37 5(X3) = X27

and

A(Xp) = %(1+Xo)®(1+Xo)+%(1—X0—X1—X2—X3)®(1+X1)
+%(1+X3)®(1+X2)+%(1+Xz)®(1+X3)
+%(1+X1)®(1—X0—X1—X2—X3)—l®1,

A = f14X)@ (14 X) + 51— Xo— X0~ X~ Xa)© (14 X0)

1 1
+ g(1+X3)®(1+X3)+g(1+Xz)®(1—Xo—X1—Xz—X3)

1
+ g(l-l-)ﬁ)@)(l-i-)(o)—1®17
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1 1
A(Xp) = g(1+Xo)®(1+xz)+g(l—xo—xl—)<2—X3)®(1+X3)
1 1
+ g(1+X3)®(1—X()—Xlfxz—X3)+g(1+X2)®(1+X0)

1
+ g(1+X1)®(1+X1)—1®1,

1
A(X3) = g(1+Xo)®(1+X3)
1
+g(1*X()*X1*X2*X3)®(1*X07X17X27X3)
1 1
+ g(1+X3)®(1+X0)+g(1+Xz)®(1+X1)

1
+ g(1+X1)®(1+X2)—1@1.
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4. The Group of Points

Let
(QCP)* = Q[X07 X17 B 7Xp—2]//

be the absolutely semisimple Hopf form of QC,. Let V be the set
of common zeros of the polynomials in the ideal /.

V consists of p points of QP!
Pi,P>,....Py_1,P,

where for 1 < j < p — 1, P; is the point that has p — 1 in the ith
component and —1 elsewhere, and P, has —1 in each component.
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Let
G = Homgag((QCp)", —)

be the Q-group scheme represented by (QCp,)*.
It is well-known that there is a group isomorphism
GQ)=Vv=c

defined by X; — x;, where x; is the ith component of P € V,
1< i< p—1][14, Section 1.2, Theorem], [14, Section 2.3].

In more detail: V is endowed with a binary operation (point

addition) induced from comultiplication. Point addition is defined
as follows.
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For P = (X07X]_7 R ,Xp_2), Q - ()/07)/1, oo 7yP—1) in V'

P+Q:R:(207zla""ZP*2)’

where
1 P2
20 = S((L+x0)(1+50) + (1= >_x)(1+1) + (1 +x-2)(1+ )
i=0
p—2
+o (L)L 4 yp2) + L+ x)(1 =D y) - 1,
i=0
1 p—2 p—2
Zp o = E((1+XO)(1 +Fyp2) (1= x) (1= yi) + (14 xo-2)(1+ o)
i=0 i=0

(1 +x-3) (1 +y1) + -+ (L +x)(1+yp-3)) — 1.
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The identity element in V is the point
0 = P; = (e(X0),e(X1),e(X2), ..., e(Xp—2))
=(p-1,-1,-1,...,-1);
the inverse of the point P = (xg, x1,%2,...,Xp—3,Xp—2) € V' is
—P = (5(X0), S(X1),5(X2),...,5(Xp—2)

p—2
= (x0, — Zx,-,xp,g, Xp—3,...,X3,X2),
i=0
where we identify S(X;) with its image under the Q-algebra
homomorphism X; — x;.

Thus V is a group with p elements, which must be isomorphic to
Cp.
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Example 10.
From Example 9

(QCS)* = Q[X07X17X27X3]/l

is the absolutely semisimple Hopf form of QCs. The set of
common zeros of the polynomials in [ is

V={(4-1,-1,-1),(-1,4,-1,-1),(-1,-1,4,-1),
(-1,-1,-1,4),(-1,-1,-1,-1)},

with V =2 G5, where V is endowed with point addition.

The identity element is O = P; = (4,—1,—1, —1), the inverse of
P, =(-1,4,-1,-1)is Ps = (—1,—1,—1,—1), and the inverse of
Py=(-1,-1,4,~1)is Py = (~1,~1,—1,4).
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For instance,

Pi+ 0O = (-1,-1,4 1)+ (4,-1,-1,-1)
= (~1,-1,4,-1)
= P3,

and

2P, = 2(-1,4,-1,-1)

= (~1,4,—1,-1)+(-1,4,—-1,-1)
= (~1,-1,4,-1)
= P

32/57



5. Connection to Hopf-Galois Theory

5.1 Brief Review of Greither-Pareigis
Let E/K be a Galois extension with group G. Let H be a finite
dimensional, cocommutative K-Hopf algebra.

Suppose there is a K-linear action - of H on E that satisfies
h-(xy)=> (hay - x)(hay-y), h-1=¢e(h)]1
(h)

forall he H, x,y € E, where A(h) =3, h1) ® h2) is Sweedler
notation. Suppose also that the K-linear map

J: E®@k H— Endk(E), j(x® h)(y) =x(h-y)

is an isomorphism of vector spaces over K. Then H together with
this action, denoted as (H, ), provides a Hopf-Galois structure
on E/K.
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Two Hopf-Galois structures (Hi, 1), (Ha,-2) on E/K are
isomorphic if there is a Hopf algebra isomorphism f : H; — H> for
which h-1 x = f(h) -2 x for all x € E, h € H (see [4, Introduction]).

C. Greither and B. Pareigis [5] have given a complete classification
of Hopf-Galois structures up to isomorphism.

Theorem 11 (Greither and Pareigis).

Let E/K be a Galois extension with group G. There is a
one-to-one correspondence between isomorphism classes of Hopf
Galois structures on E /K and regular subgroups of Perm(G) that
are normalized by \(G).
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One direction of this correspondence works by Galois descent:

Let N be a regular subgroup of Perm(G) normalized by A(G); G
acts on the group algebra EN through the Galois action on E and
conjugation by A(G) on N, i.e.,

g(xn) =g(x)(én),g € G, x€ E, n € N.

where &1 denotes the conjugation action of A\(g) € A(G) onn € N.

Let
H=(EN)® ={xe€ EN: g(x)=x,Vg € G}.

be the fixed ring H under the action of G. Then H is an
n-dimensional E-Hopf algebra, n = [E : K], and E/K admits the
Hopf Galois structure (H,-).
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By [5, p. 249, proof of 3.1, (a) = (b)],
E®x H=Z E®k KN =2 EN,
as E-Hopf algebras, so H is an E-form of KN.

Let N be a regular subgroup of Perm(G) normalized by A(G), and
let (H,-) be the corresponding Hopf-Galois structure. If N is
isomorphic to the abstract group N’, then we say that the
Hopf-Galois structure (H,-) on E/K is of type N'.
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5.2 Hopf Forms and Hopf-Galois Structures

If (H,-) is a Hopf-Galois structure on E/K of type N, then the
Hopf algebra H is a Hopf form of KN. Thus H can be recovered
via Theorem 1. In other words, with F = Aut(N), there is an
F-Galois extension L of K with

(L) =H = (LN)F.

As we have noted (Remark 3), it is not clear how to compute the
required L; the inverse map

O~ Hopf(KN) — Gal(K, F)

is not given explictly.
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Here is one way to find L.

Proposition 12.

Let E/K be a Galois extension with group G. Let (H,-) be a
Hopf-Galois structure corresponding to regular subgroup N. Let
F = Aut(N), let

W ={g € \G): &n=n,vne N},

and let L = EW. If W is a normal subgroup of \(G) with
ANG)/W = F, then ©(L) = H.

Proof.
By the Fundamental theorem of Galois theory, L = E" is Galois

with group F =2 A\(G)/W, so L is an F-Galois extension. Now,
H = (EN)E = (LN)F,
and so, ©(L) = H. O
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Example 13.
We consider the splitting field E of the polynomial x* — 10x% + 1

over Q. One has E = Q(v/2,v3); E/Q is Galois with group
G, x G ={1,0, 7,70} with Galois action

o(vV2)=v2, o(v3)=-V3, 7(V2)=-v2, 7(v3)=V3.

By [1], there are three Hopf-Galois structures on E/Q of type (4,
each of which is determined by a regular subgroup N = (4
normalized by A(C2 x (). One such N is given as

N =1{(1),(1,3,2,4),(1,2)(3,4),(1,4,2,3)},
wherel:=1,2:=0,3:=7,4:= 70, and
)‘(C2 X C2) = {(1)’ (172)(374)7 (173)(274)7 (1,4)(2,3)}-

N is a regular subgroup of Perm(C, x ;) normalized by
)\(Cg X C2) with N = (4.
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Let (H,-) be the corresponding Hopf-Galois extension with
H = (EN)C.

As one can check
W={geANCxG): gn=n,Yne N} ={(1),(1,2)(3,4)} = {1,0}.

We have G/W = F = Aut(Gy) = C,, and the fixed field
L =E"Y = Q(+v/2) is an F-Galois extension of Q.

So by Proposition 12, ©(L) = H.
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6. Absolutely Semisimple Hopf-Galois Structures

Let E/Q be Galois with group G, n = |G]|.

When does E/Q admit a Hopf-Galois structure whose Hopf
algebra is the absolutely semisimple Hopf form (QC,)* of QC,?

Proposition 14.

Let E/Q be a Galois extension with group G, n = |G|. Suppose
E/Q admits the Hopf-Galois structure ((QC,)*,-). Then ¢(n) | n,
where ¢ is Euler’s function.
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Proof.
Let N be the regular subgroup of Perm(G) normalized by A\(G)
that corresponds to ((QC,)*,-). Then

E ®g (QC,)* = EN

as Hopf algebras. Thus (QC,)* is an E-Hopf form of QN and
E ®q (QCh)* = (EC,)* = EN, as E-Hopf algebras. The dual
(EC,)* decomposes as E x E x --- x E, thus

EN=E x E x---x E, and so, (EN)* = EN, as Hopf algebras.

n
Hence, EN = EC,, as E-Hopf algebras, and so, C, =2 N. We
conclude that E contains Q[x]/(®x(x)). Thus E contains a
subfield of degree ¢(n) over Q. Hence ¢(n) | n.
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Proposition 15.

Let n > 2. Then ¢(n) | n if and only if n = 223% where a > 0,
b>0.

Proof.
Suppose that ¢(n) | n. Let n = p{*ps? - -- p;*, where p; are distinct
primes, and e¢; > 0. Then

¢(n) = (pr— 1) H(p2 — 1)p2 " (pk — L)pf

Since n > 2, ¢(n) is even, and so, n is even. Thus, p; = 2 in the
prime factorization of n. Suppose that n has two odd prime factors
pi, pj. Since e;,e; > 0, both p; — 1 and p; — 1 are even, and so,
2411 | ¢(n), hence 26111 | n, which is a contradiction. Thus, n has
only one odd prime factor, say p, hence n = 2%1p¢, e > 0. Now,
(p—1) | &(n), thus (p — 1) | n. Consequently, (p — 1) = 2" for
some r > 0 and 217147 | ¢(n), thus 217147 | n. It follows that
r=1and so p = 3. Hence n = 223" where a, b > 0.
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For the converse, suppose that n =223 a>0, b>0. If b=0,
then ¢(n) = 22~1 which divides n. If b > 0, then
p(n) = 2271.2.3b=1 = 233b=1 \which divides n.

Proposition 14 and Proposition 15 yield necessary conditions for
the Galois extension E/Q with group G, n = |G|, to admit the
Hopf-Galois structure ((QC,)*, ), namely,

(i) n=2%3% a>0, b>0,
(i) E/Q admits a Hopf-Galois structure of type Cp,.
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Example 16.

Consider the splitting field E of the polynomial x* — 2x? + 9 over
Q. We show that E/Q admits the Hopf-Galois structure

((QG)*,-). We have E = Q(v/—1,v2); E/Q is Galois with group

G x G ={1,0, 7,70} with Galois action
o(v—-1) = v—1, J(\/E) = V2,
r(vV=1) = —v/—-1, 7(V2)=V2.

Note that n = 4 = 223%. As in Example 13, there are three
Hopf-Galois structures on E/Q of type Cy4, one of them is given by
the regular subgroup

N ={(1),(1,3,2,4),(1,2)(3,4),(1,4,2,3)}.

Let (H,-) be the Hopf-Galois structure determined by N,
H = (EN)%x&,
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As in Example 13,
W={g e N(GxG): &n=n,Vne N} ={(1),(1,2)(3,4)} = {1.0}.

Thus W is a normal subgroup of A(C2 x G) with
G/W = G2 F = Aut(Cy).

We have L = EW = Q(v/—1), thus L is F-Galois. Hence by
Proposition 12,
o(L) = H.

But L = Q(a), and so, ©(L) = H = (QC4)* by Proposition 5.
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Example 17.

We take E/Q to be the splitting field of x> — 2 over Q, then
n=6=2-3. As shown in [8, Section 7], E/Q admits a
Hopf-Galois structure of type Cg whose Hopf algebra is the
absolutely semisimple Hopf form (QGCg)* of QGs.

Remark 18.

Recently, T. Kohl [9] has determined whether or not a Galois
extension with group G, n = |G|, admits a Hopf-Galois structure
of type C, for various G. For example, if E/Q is Galois with group
Ay, then there are no Hopf-structures of type Cia. Thus E/Q
cannot have a Hopf-Galois structure with Hopf algebra (QCi2)*.
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Remark 19 (Galois theoretical embedding problem).

[10, Introduction]. Let L = Q((n), n > 2, be the Galois extension
of Q with group 7, = Aut(C,). Does there exist a Galois
extension E /Q with group G, and a short exact sequence of groups

1-T—>G6G—>7Z,—1,
so that ET = Q(C,)? If this is the case, suppose further that E/Q
admits a Hopf-Galois structure corresponding to regular subgroup
N = C,, with
W={geAG): én=nne N} =T.

Then E/Q admits the Hopf-Galois structure ((QC,)*, ).
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Remark 20.

Regarding Remark 19, perhaps the Galois theoretical embedding
problem would be easier to solve if n =2 -3, b > 0. For then Z,
is cyclic of order ¢(n) [7, Proposition 4.1.3].
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7. Some Questions

Question 21.

Consider the construction of the absolutely semisimple Hopf form
(QCp)* of Proposition 7. Suppose that the Q-basis for L = Q(() is
changed to the normal basis on the generator —(, i.e.,

{_C7g(_C)7g2(_C)7 ce 7gp72(_4)}7

or to some other Q-basis given by powers of a+ b(, a, b € Q. How
does this change of basis affect the generators and relations of
(QCp)* and the points of the variety V' ?
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Question 22.

Given two Hopf forms H, H' of KC, when do we have H =~ H' as
K-Hopf algebras? as K-algebras? (This is analogous to the
question for Hopf-Galois structures.)
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Question 23 (Pareigis).

Let N be any finite group. By Maschke's theorem, QN is
semisimple. Extending scalars to C yields the Wedderburn-Artin
decomposition

CN = Matp, (C) x Mat,,(C) x - -+ x Maty, (C).
A Hopf form H of QN is absolutely semisimple if
H = Matp, (Q) x Maty,(Q) x - -+ x Mat,, (Q).

For which groups N does QN admit an absolutely semisimple Hopf
form?
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We address this question for various groups. First we consider
abelian groups, then non-abelian groups.

Example 24.

Let N = C,, n> 1. By Theorem 4, (QC,)* = Q" is the absolutely
semisimple Hopf form of QC,. By Proposition 5, ©(L) = (Q(,)*,
where L = Q((y).

Example 25.

Let N=CJ, p>2, n=>1; Cjis the elementary abelian group of
order p”. Then QCJ admits the absolutely semisimple Hopf form

n

(QC[)’)* >~ QP
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So there is an Aut(Cp)-Galois extension L/Q for which
o(L) = (Q)".
What is the structure of L?

Proposition 26.
Let .

17 (")

L =Q(¢p) Tt
Then L is an Aut(C]J)-Galois extension of Q with ©(L) = (QCJ)*.
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Proof.
(Sketch) Aut(CJ) = GL(Fp) and

n—1
IGL,(Fp)| = [[(p" - P).
i=0
For 1 < j < n, there is a subgroup U; of GL,(F,) given as
Uj = {diag(1,...,1,a¥,1,...,1): a¥ e F5} = F;.

The index is [GLn(Fp) : U] = (IT7 (p" — 1))/ (p = 1); Q(Gp) s
a Uj-Galois extension of fields. Thus by [12, Theorem 4.2],

175 (" —p')

L=0Q(C) ~*
is GL,(Fp)-Galois. Moreover, ©(L) = (QCJ)*.
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Example 27.
Let N = Ds3. Then

QD3 =2 Q xQ x Matg(@).

Thus QDs is an absolutely semisimple Hopf form of itself.

Example 28.
Let N = D,. Then

QDs 2 Q x Q x Q x Q x Mat2(Q).

Thus QD is an absolutely semisimple Hopf form of itself.
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Example 29.
Let N = @g, the quaternion group. We have

CQRs = C x C x C x C x Maty(C),

yet

QR=QxQxQxQxH,

where H is the rational quaternions. Thus QQg is not an
absolutely semisimple form of itself.

Does QQg admit an absolutely semisimple Hopf form?
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